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Electrification of Canada’s energy and transport sectors is essential to achieve net-zero
emissions by 2050 and will require a vast amount of raw materials. A large proportion
of these critical raw materials are expected to be sourced from as yet undiscovered
mineral deposits, which has the potential to accelerate environmental pressures on
natural ecosystems. Herein we overlay new prospectivity model results for a major
source of Canada’s battery minerals (i.e., magmatic Ni ± Cu ± Co ± PGE mineral
systems) with five ecosystem services (i.e., freshwater resources, carbon, nature-
based recreation, species at risk, climate-change refugia) and gaps in the current
protected-area network to identify areas of high geological potential with lower
ecological risk. New prospectivity models were trained on high-resolution
geological and geophysical survey compilations using spatial cross-validation
methods. The area under the curve for the receive operating characteristics (ROC)
plot and the preferred gradient boosting machines model is 0.972, reducing the search
space for more than 90% of deposits in the test set by 89%. Using the inflection point on
the ROC plot as a threshold, we demonstrate that 16% of the most prospective model
cells partially overlap with the current network of protected and other conserved areas,
further reducing the search space for new critical mineral deposits. The vastmajority of
the remaining high prospectivity cells correspond to ecoregions with less than half of
the protected areas required to meet national conservation targets. Poorly protected
ecoregions with one or more of the five ecosystem services are interpreted as hotspots
with the highest potential for conflicting land-use priorities in the future, including parts
of southern Ontario and Québec, western Labrador, and northern Manitoba and
Saskatchewan. Managing hotspots with multiple land-use priorities would
necessarily involve partnerships with both Indigenous peoples whose traditional
lands are affected, and other impacted communities. We suggest that prospectivity
models and other machine learning methods can be used as part of natural resources
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management strategies to balance critical mineral development with conservation and
biodiversity values.

Keywords: machine learning, critical minerals, sustainable development, conservation priorities, ecosystem services,
mineral potential, battery

INTRODUCTION

Demand for renewable energy technologies is expected to
accelerate over the next few decades as governments
adjust their national energy policies to meet global emission
targets (Gielen et al., 2019; Spillias et al., 2020). However, the
manufacturing process for renewable energy technologies
tends to be material intensive (Valero et al., 2018; Calvo and
Valero 2022) and the proliferation of electric vehicles, solar
panels, wind turbines, and batteries is placing unprecedented
pressure on the supply chains of critical raw materials
(Sovacool et al., 2020). The list of minerals, chemical
elements, chemical compounds, metals, and/or metalloids
required for manufacturing renewable energy technologies
are hereafter referred to as critical minerals for simplicity
(Gadd and Lawley 2022). Improved processing and
extraction methods of ore and waste from currently
operating mines and/or new recycling technologies are
unlikely to meet the expected growth in mineral demand (Ali
and Giurco, 2017). Instead, new discoveries of critical mineral
deposits are required, and the increased exploration and
development has the potential to apply further pressure to
natural ecosystems and contribute to the trend of declining
biodiversity (Sonter et al., 2020; Luckeneder et al., 2021).
Environmental, social, and governance (ESG) performance is
an essential factor in deciding whether a discovered critical
mineral deposit ultimately goes into production, as consumers
are placing an increased priority on safe, environmentally
responsible, and sustainable sourcing of minerals (Franks
et al., 2014; Lèbre et al., 2019, 2020; Jowitt et al., 2020).

Recent research suggests that ESG performance in Canada
is generally greater than the global average when considering
waste, water, conservation, land uses, communities, social
vulnerability, and governance risk factors (Lèbre et al., 2019,
2020). The intersection between one of these ESG criteria,
i.e., conservation, and critical mineral extraction is particularly
important as the International Resource Panel estimates that
90% of biodiversity loss globally is related to the extraction and
processing of natural resources (IRP 2019). The World
Economic Forum also ranks biodiversity loss as one of its
most severe risks to society and the global economy (World
Economic Forum 2022). Major producers of critical minerals
like Canada thus have an important role to protect against
further environmental degradation. To reverse the trend of
declining biodiversity, increase resilience to climate change,
and protect essential ecosystem services, Canada has set
national conservation targets as part of its commitments
under the Convention on Biodiversity and the post-2020
Global Biodiversity Framework (25% of land conserved by
2025 and 30% by 2030) and is contributing to other
international conservation efforts (e.g., 50% of land by 2050)
(Dinerstein and Olson, 2017). However, very few, if any,
research studies have evaluated whether these area-based
conservation targets can be balanced with increased
exploration and development of critical minerals, due in part,
to the difficulty of accurately predicting where new deposits
are most likely to occur (Maus et al., 2020; Allan and
Possingham,. 2022). Moreover, environmental and
ecological risks tend to be monitored, reported, and
managed at the project level and after a mineral deposit has
already been discovered rather than as part of broader land-use
planning at larger spatial scales (Figure 1).

FIGURE 1 | Mineral exploration and development workflow
from public geoscience to exploration, discovery, development,
production, and remediation. Combining environmental, social, and
governance (ESG) data with prospectivity modelling can be
used as input for land-use planning, partnership discussions with
Indigenous peoples and other impacted communities, and to focus
mineral exploration expenditures on areas that have lower
ecological and environmental risk.

FIGURE 2 | Area-based conservation targets are an important
strategy for protecting species at risk, reversing the declining trend
of biodiversity, and building resilience to climate change. Herein
gaps in the current protected-area network were combined
with ecosystem services (i.e., freshwater, carbon storage, nature-
based recreation), species at risk and critical habitat, and climate-
change refugia to highlight the parts of poorly protected
ecoregions with high potential for providing benefits to people and
the environment.
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Herein we integrate artificial intelligence-based predictions
of mineral potential (i.e., prospectivity modelling) with
measures of ecological representation and ecosystem
services to address both of those research gaps (Figures 1,
2). The focus is on Canada’s major source of battery minerals,
i.e., magmatic Ni (± Cu ± Co ± Platinum Group Elements; PGE)
mineral systems (Figure 3), that are particularly susceptible to
future supply chain disruptions and for which Canada will likely
be able to increase production in the future (Jowitt et al., 2020;
Mudd and Jowitt 2022). The prospectivity modelling results
and the public data underlying the new magmatic Ni (± Cu ±
Co ± PGE) models can be used as input into land-use planning
by Indigenous peoples and other impacted communities to
assess economic opportunities, while examining the
possibility of new or expanded conservation areas
(Figure 4A). Indigenous-managed conservation areas, in
particular, have been shown as an effective strategy for
halting or reversing the trend of declining biodiversity in
Canada, Brazil, and Australia (Schuster et al., 2019).

CANADA’S BATTERY MINERAL SOURCES

Battery manufacturing is an energy- and material-intensive
process, requiring graphite, Ni, Co, Li, Zn, and other critical
minerals. The focus of the present study is supporting
exploration for new sources of Ni and Co because both
metals are needed to increase the energy density and lower
the cost of batteries for electric vehicles. Other battery

FIGURE 3 | Conceptual model for magmatic Ni (± Cu ± Co ±
PGE) mineral systems and their mappable criteria. Ultramafic to
mafic melts are focused along thinned paleo-continental margins
or other zones of pre-existing lithospheric weakness to
depositional traps within the continental crust (Lawley and
Tschirhart. 2021). Multiple seismic, magnetic, and gravity
anomalies were used to map mineral system pathways and traps
at shallower crustal levels (McCuaig et al., 2010).

FIGURE 4 | (A) Distribution of the current protected-area network based on the Canadian Protected and Conserved Areas Database
(CPCAD); (B) the presence or absence of ultramafic andmafic rocks, representing the source ofmagmatic Ni (± Cu ± Co ± PGE)mineral systems;
(C) Map showing the distribution of geological provinces (Wheeler et al., 1996). The locations of magmatic Ni (± Cu ± Co ± PGE) deposits and
occurrences used for training the prospectivity models are shown for reference.
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minerals and other sources of Ni and Co are not considered
due to the availability of national-scale data in Canada.
Globally, the majority of Ni is sourced from laterite deposits
(54% of Ni resources; 190 Mt at 1%–2.5% Ni) and magmatic Ni
(± Cu ± Co ± PGE) mineral systems (35% of Ni resources;
124 Mt at 0.4%–2% Ni) (Mudd and Jowitt 2022). A significant
amount of Cu, Co, and Platinum Group Elements (PGE) are
produced as bi-products of these Ni mining activities. Canada
is the fourth largest producer of Ni in the world, producing an
estimated 130, 000 t per year (USGS 2022). The vastmajority of
Canadian Ni and Co production is sourced from: 1) Ni deposits
from the Sudbury basin. The Ni- and Co-bearing pentlandite
and pyrrhotite at these deposits segregated from a melt sheet
that formed in response to a Paleoproterozoic meteorite
impact (Keays and Lightfoot 2020). Although these impact-
related Ni deposits are economically significant to Canada and
globally, the probability of finding additional examples of this
mineralization style outside of the Sudbury basin is low. The
environmental and social impacts of the long mining history in
the region are also well documented (Dirszowsky 2020) and its
relatively small size (27 km × 60 km) are at odds with the
national focus of the present study. For all three of these
reasons, the prospectivity for impact-related deposits around
Sudbury are not discussed further; and 2) Magmatic Ni (± Cu ±
Co ± PGE) mineral systems (Naldrett 1981; Arndt et al., 2005;
Mungall 2014; Barnes et al., 2016). Pentlandite is the primary
host for Ni and Co and examples of this mineral system type
occur across Canada (Figures 4B,C). Continued mineral
exploration within known districts or in remote parts of
northern Canada that have not seen significant exploration
for this mineral system are highly likely to result in new
discoveries. Improved exploration targeting for magmatic Ni
(± Cu ± Co ± PGE) mineral systems is urgently needed to
advance Canada’s position as a supplier of critical minerals for
renewable energy technologies.

MAGMATIC NI (± CU ± CO ± PGE) MINERAL
SYSTEMS

Mineral systems represent the conceptual framework for
combining all of the geological processes that must
converge in space and time to form a mineral deposit
(Wyborn et al., 1994; McCuaig et al., 2010; Barnes et al.,
2016; Hagemann et al., 2016; Huston and Mernagh 2016).
Regions with one or more pieces of evidence for each
mineral system component (i.e., drivers, sources, pathways,
traps, and preservation) are generally considered to be have
higher mineral potential. As a result, translating conceptual
mineral system models to mappable proxies is the first step in
the prospectivity modelling process (Figure 3; Supplementary
Table S1) (McCuaig et al., 2010).

Magmatic mineral systems can be further divided into sub-
types based on some difference in their host rocks and
tectonic settings (e.g., komatiite-hosted, flood basalt-hosted,
anorthosite-hosted, ferropicrite-hosted, and Alaska-type)
(Naldrett 1981). However, virtually all magmatic mineral

system sub-types are associated with the same mappable
criteria for sources, pathways, and traps at the national
scale and were thus considered together for modelling
purposes (McCuaig et al., 2010). For example, critical
minerals for each magmatic mineral system sub-type are
ultimately sourced from the mantle (Figure 3). Large
ultramafic to mafic intrusive complexes mapped at surface
represent some of the most obvious evidence for where
mantle-derived melts were focused into the overlying crust
by zones of pre-existing lithospheric weakness (Figure 3)
(Begg et al., 2010; Barnes et al., 2016). The intrusions or
parts of intrusions that actually host Ni deposits are
considerably smaller (i.e., less than a few km) and tend to
be missing from regional geological maps. In those cases,
small or rare mafic dykes and intrusions described with the
majority map unit represent the only available evidence for
mantle-derived melts. Both forms of geological map data
(i.e., majority and minority rock types and unstructured map
unit descriptions) were used to map the mantle sources of
magmatic mineral systems. Geological map databases were
also used to map the distribution of Archean and Proterozoic
rocks, which are particularly prospective time periods because
of the hotter mantle temperatures that facilitated the transfer
of Ni and Co to the crust (Barnes et al., 2016). The high
prospectivity of ultramafic volcanic rocks that are unique to
these eons reflects the importance of mantle temperature as a
driver of some mineral system sub-types (i.e., komatiites;
Figure 3) (Arndt et al., 2005). In contrast, Alaska-type
deposits and other arc-related mineral system sub-types in
the Grenville province formed during the Phanerozoic and
Mesoproterozoic, respectively (Sappin et al., 2011;
Milidragovic et al., 2021). The most favourable paleo-
tectonic setting for magmatic mineral systems thus varies
across time, with the largest andmost economically significant
deposits associated with the Archean and Proterozoic.
Thinned continental lithosphere and other lithospheric-scale
features that connect these fertile, mantle sources with
depositional sites in the crust were mapped using a
combination of satellite gravity and seismic survey
compilations (Figure 3).

At shallower crustal depths, mineral system pathways were
mapped using proximity to faults, terranes boundaries, and
lithological contacts (Supplementary Table S1). National
gravity and magnetic survey compilations, re-processed
using multiple methods to highlight the edges of density
and magnetic anomalies, were also essential for mapping
mineral system pathways under surficial cover and at
multiple depths within the crust (discussed below).
Interaction between mantle-derived melts and the S-rich
rocks, either during transport along these pathways or at the
depositional trap, is interpreted as one of the possible
processes for triggering the rapid deposition of immiscible
sulphide liquid droplets within the magma to form a mineral
deposit (Barnes and Lightfoot 2005; Keays and Lightfoot
2020). The presence of black shales or other carbonaceous
rock types contained within geological map databases were
used to assess the potential for this depositional trapping
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mechanism across Canada. Unfortunately, many of the other
mechanisms that are known to segregate and accumulate
sulphide liquid (e.g., mechanical accumulation, and gravity-
driven processes) (Naldrett 1981; Arndt et al., 2005; Barnes
et al., 2016) are impossible to recognize from the available
datasets (Lawley and Tschirhart. 2021). Datasets that can be
used as proxies for the physical and chemical trapping of
magmatic sulphide will likely improve prospectivity model
performance in the future. Instead, the focus of the present
study is on mapping the most likely sources (e.g., ultramafic to
mafic melts), drivers (e.g., mantle melting events), and
pathways (e.g., zones of long-lived mantle and crustal
weakness) of magmatic mineral systems (Barnes et al.,
2016; Lawley and Tschirhart. 2021).

Mineral system preservation and the potential for finding
buried deposits were assessed by including descriptions of
metamorphic grade for the preferred prospectivity model and
by generating a separate baseline prospectivity model that is
the least impacted by the availability of surface information
(discussed below). Overprinting metamorphism is known to
remobilize magmatic sulphide from its ultramafic and mafic
source rocks, a major problem for prospectivity models that
are based on the spatial overlap ofmineral system sources and
traps (Lisitsin et al., 2013). Giant Ni deposits around Thompson
represent significant example of these remobilized mineral
system sub-types (Figure 4B). Baseline prospectivity models
that are not based on geological datasets are the most
appropriate for buried and remobilized deposits; whereas
the preferred prospectivity model incorporates more
conceptual mineral system components and is expected to
perform better overall (McCuaig et al., 2010).

PROSPECTIVITY DATA AND METHODS

Prospectivity Modelling Data
All prospectivity models for magmatic Ni (± Cu ± Co ± PGE)
mineral systems are based on national-scale geological and
geophysical compilations. The goal of this work is to improve
the previous model published in Lawley and Tschirhart. (2021)
by adding higher resolution datasets and more robust training
methods. For example, the new prospectivity model is based
on the H3 discrete global grid system (DGGS) developed by
Uber (https://h3geo.org/) rather than an arbitrary grid. The
H3 DGGS uses hexagon tiling for the globe at multiple
spatial resolutions, with each H3 hexagon cell assigned to a
unique and hierarchical address (Lawley and McCarfferty,.
2022). All datasets used for modelling were spatially
indexed based on resolution 7 of the H3 DGGS,
corresponding to ~1.8 million unique H3 addresses for the
Canadian land mass. This resolution (i.e., 1.22 km per side) is
approximately twice the resolution of the arbitrary 5 km square
grid reported in Lawley and Tschirhart. (2021). All spatial
indexing operations to transform geological and geophysical
datasets to the H3 DGGS were completed in R (R Core Team
2021) using the “tidyverse” (Wickham and Averick,. 2019), “sf”
(Pebesma 2018), “raster” (https://github.com/rspatial/raster),

“exactextractr” (Baston et al., 2021) and “h3jsr” (https://github.
com/obrl-soil/h3jsr) packages.

The new prospectivity models are also based on the
provincial, terrestrial, and other geological survey map
datasets that are described in Lawley and McCarfferty.
(2022) rather than the older and more generalized national
geological map (Wheeler et al., 1996). The higher spatial
resolution of the provincial and territorial geological
datasets is important for mapping the small ultramafic to
mafic intrusions that are the source and primary host rock
for magmatic Ni (± Cu ± Co ± PGE) sulphide deposits (Barnes
et al., 2016). Custom vocabularies were used to search through
the unstructured rock descriptions associated with each
geological map dataset to map the presence or absence of
up to 17 geological properties as described in Lawley and
McCarfferty. (2022) for sediment-hosted mineral systems.
Using the available rock descriptions as input into
prospectivity modelling is an important step for mapping the
presence or absence of rare prospective rock types that are not
represented by the map unit.

The preferred pathways of magmatic Ni (± Cu ± Co ± PGE)
mineral systems are mapped using a combination of seismic,
magnetic, and gravity data compilations and fault databases
(McCuaig et al., 2010; Lawley and Tschirhart. 2021, 2022).
Seismic data compilations were used to map abrupt changes
in lithospheric (i.e., the depth to the lithosphere-asthenosphere
boundary) and crustal thickness (i.e., depth to Moho), which
represent an important first-order control on the location of
magmatic Ni (± Cu ± Co ± PGE) mineral system sub-types
(Begg et al., 2010). Paleo-tectonic settings were mapped using
satellite gravity datasets and their derivative products, as
described in Ebbing et al. (2018). Other higher resolution
geophysical datasets are more appropriate for finding
density (i.e., gravity) and/or magnetic contrasts that could
represent major lithological boundaries at and below
surface. National magnetic and gravity datasets were
further processed to accentuate linear features (e.g., 1st
vertical derivative; 1VD), highlight the edges of geophysical
anomalies (e.g., the horizontal gradient magnitude; HGM;
multi-scale edge detection or “worms”), and/or upward-
continued and filtered to remove near-surface noise that has
the potential to obscure the imaging of mineral system
pathways in the mid- to upper-crust (Lawley and Tschirhart.
2021, 2022). All geophysical and geological datasets were then
combined using the unique address of each hexagonal H3 cell
prior to prospectivity modelling. The data sources used to
model each component of the magmatic Ni (± Cu ± Co ±
PGE) sulphide mineral system are reported with prospectivity
model results in Supplementary Table S1.

Prospectivity Modelling Methods
All prospectivity modelling was completed in R (R Core Team
2021) using the H2O artificial intelligence platform (https://
www.h2o.ai/). Missing values for the magnetic- and gravity-
based datasets were imputed using the mean of each variable.
The relatively few missing values are unlikely to have a major
impact on our analyses. Categorical datasets such as rare rock
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types and geological periods were combined with their closest
classification (e.g., Other_Unknown was combined with Other_
Unconsolidated) to lower the dimensionality of the data prior to
modelling. Other pre-processing steps were tested over the
course of the study (e.g., outlier removal, outlier replacement,
min max scaling, log transformation, and standardization) but
did not significantly improve performance and were not
considered further. Deposits and mineral occurrences were
used as true positives; whereas all other H3 cells were
assumed to be true negatives for the purposes of this
study. Unfortunately, drill hole and associated assay data
are not currently available across Canada to correctly
classify H3 cells that are truly devoid of mineralization
(Lawley and Tschirhart. 2021).

The training and test sets were generated using a spatial
cross-validation method, as implemented in the “blockCV”
package (Valavi et al., 2019). The size of each block (500 ×
250 km) is based on semivariogram analysis (i.e., the sill) for a
subset of the geophysical datasets (i.e., seismic, gravity, and
magnetic datasets; Supplementary Figures S1, S2); whereas
the number of folds (i.e., five cross-validation folds and one
test set) was selected based on the limited amount of known
deposits available for training (deposits and advanced stage
exploration projects = 236; other mineral occurrences = 1,216).
The selected block represents an intermediate value between
datasets with a well-defined sill and more complex variograms
with larger ranges of spatial autocorrelation (Supplementary
Figure S1). Ultimately, the block size is a subjective choice that
balances the need to address spatial autocorrelation, data
limitations, and computation (Roberts and Bahn, 2017). The
blockCV package was then used to randomly assign each
block into a fold whilst making sure that each fold contains
an approximately equal number of known deposits (Valavi
et al., 2019). The more conventional approach of randomly
splitting training and test datasets has the potential to
overestimate model performance for strongly clustered
training data (Roberts and Bahn, 2017; Valavi et al., 2019).

Model results were calculated using the Gradient Boosting
Machine (GBM) function in H2O. The GBM method is included
within the family of tree-based classification algorithms, with
each tree representing a set of if-else conditions that explore
the range of possible outcomes for any given decision.
However, unlike random forest and other tree-based
classifiers that aggregate the predictions of multiple
independent trees, the GBM method adds each decision tree
sequentially using the classification errors of the previous trees
to improve the overall model performance. The process of
successively improving the performance of each decision tree
is referred to as “boosting” and is one of the reasons that GBM
models tend to outperform other tree-based classifiers and
other supervised learning methods (Lawley and Tschirhart.
2021, 2022). Several recent studies have applied different
boosting methods to prospectivity modelling, including
AdaBoost (Brandmeier et al., 2020) and XGBoost (Parsa
2021; Zhang et al., 2022). The GBM method was
demonstrated to outperform these and all other supervised
machine learning methods available in H2O (e.g., logistic

regression, random forest, XGBoost, and neural networks)
and the weights-of-evidence method during previous testing
(Lawley and Tschirhart. 2021, 2022). As a result, the current
study focused on optimizing the GBM method by performing
random grid searches (n = 100) to find the best combination of
hyperparameters (e.g., number of trees, tree depth, and
learning rate) rather than testing different data-driven
prospectivity modelling methods. The process of random
grid searches was repeated using different weights (i.e., 1,
10, 100, 1,000, 10,000) to test for the sensitivity of these results
to the highly imbalanced class distribution within the training
data, with the best performance based on weighting true
positives by 1,000.

The best GBM model after hyperparameter tuning and
weighting was identified using the area under the curve
(AUC) for the receiver operating characteristics (ROC) plot
(Supplementary Figure S3). The top 30 different GBM
models from the hyperparameter grid search (total = 100)
were used to calculate the standard deviation (SD) and
relative standard deviation (RSD) for the predicted
prospectivity of each H3 cell (Supplementary Figures 4A,B).
The RSD following this approach tests the sensitivity of the
prospectivity results to the selected hyperparameters. Model
uncertainty for the preferred model was further tested by
adding 20% “noise” to the input datasets and then predicting
mineral potential for each H3 cell (i.e., each numeric values
was multiplied by a noise factor drawn from a uniform
distribution for each H3 cell and this process was repeated
30 times). The calculated SD and RSD of the predicted
prospectivity for each H3 cell following this re-sampling
method provides some test of model sensitivity to the
underlying training data (Supplementary Figures 4C,D).
Other forms of data- and model-related uncertainties are not
addressed as part of the current study (e.g., data interpolation,
missing data, data quality limited training data) (Lisitsin et al.,
2014; Parsa and Carranza 2021; Zuo et al., 2021). Variable
importance for the GBMmethod is based on the error reduction
for each input dataset observed during the training process
and is present in Supplementary Figure S5. Finally, the
baseline and preferred prospectivity models were further
evaluated using success- and prediction-rate curves, to
assess the reduction of the mineral exploration search
space in areas not used during training (Supplementary
Figure S6).

ECOLOGICAL REPRESENTATION DATA AND
METHODS

Protected Area Network
Protected areas and other effective area-based conservation
measures were taken from the 2021 Canadian Protected and
Conserved Areas database (CPCAD; managed by Environment
and Climate Change Canada; Figure 4A). The data were filtered
to include all terrestrial conservation areas (n = 11,291) with
designated (n = 8,279), established, private, and/or interim (n =
2,822), and proposed status (n = 190). Indigenous protected
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and conserved areas (IPCAs) were also included (n = 3);
however the vast majority of protected areas are managed
by national and sub-national governments (n = 7,832), non-
profit organizations (n = 2,749), other government-private
sector collaborations (n = 419), individual land owners (n =
251), and others (n = 37). The CPCAD is known to bemissing an
undetermined number of privately owned protected areas,
although these are expected to be relatively small. All
protected areas were transformed to an equal-area
projection and converted to a raster (pixel resolution 400 m)
prior to calculating the percentage overlap with each ecoregion
and ecodistrict (discussed below; Figure 5).

Ecological Representation
Ecoregions are relatively large areas of land and water with
environmental and/or ecological characteristics that differ
substantially from neighbouring areas (Omernik 1987).
Ecodistricts are smaller subdivisions of ecoregions,
recognizing that ecosystems are hierarchical and
overlapping across multiple spatial and temporal scales
(Sayre and Karagulle,. 2020). The precise boundaries
between different ecoregions and ecodistricts are poorly
defined but generally correspond to significant changes in
topography, hydrology, geology, vegetation, wildlife, and/or
climate. Ecoregions are the typical measurement “unit” to
assess ecological representation for area-based
conservation efforts, as recently demonstrated in Canada
(Coristine and Jacob, 2018; Kraus and Hebb 2020) and
globally (Dinerstein and Olson 2017). Herein we used the
National Ecological Framework for Canada dataset
published by Agriculture and Agri-Food Canada (Marshall
et al., 1996), which contains 194 and 1,021 ecoregions

(Figure 5A) and ecodistricts (Figure 5B), respectively. Both
units of ecological representation were filtered to terrestrial
areas and transformed to an equal-area projection prior to
calculating the percentage overlap with the current protected
area network contained within the CPCAD. Ecoregions were
then classified as having no protection (<1% overlap), poor
protection (%1–15%), moderate protection (15%–30%) or good
protection (>30%; Figure 5A) in order to compare with the post-
2020 Global Biodiversity Framework targets. The protection
status for each ecoregion (i.e., area protected in %) was scaled
by a logistic function to range from 0 to 1 prior to combining
with ecosystem services (discussed below).

CONSERVATION DATA AND METHODS

Ecosystem Services
The benefits that people derive from ecosystems that
contribute to human well-being are described as “ecosystem
services” (Mitchell and Schuster, 2021). Examples of
ecosystem services include provisioning services (e.g., food,
energy, and/or rawmaterials), regulating services (e.g., climate
regulation, flood prevention, and/or soil erosion control), and
cultural services (e.g., places for recreation, spiritual, and/or
therapeutic activities). Prioritizing high-capacity ecosystems
that provide essential benefits to people represents an
important component of conservation and land-use planning
(Carpenter and Mooney, 2009; Mitchell and Schuster, 2021).
Herein we integrated the ecosystem services previously
described by Mitchell and Schuster, (2021) and Stralberg
et al. (2020b) to evaluate the overlap between areas
important for ecosystem services with areas with high

FIGURE 5 | (A)Protected-area gap analysis based on ecoregions; (B) protected-area gap analysis based on ecodistricts. Colours are
classified relative to the post-2020 Global Biodiversity Framework (i.e., conserving 30% of land by 2030) as no protection (<1%), poor protection
(i.e., less than half the national conservation target; 1%–15%), moderate protection (i.e., more than half the national conservation target; 15%–
30%), and good protection (i.e., more than the national conservation target; >30%). Labels: Kingurutuk-Fraser Rivers = 1; Torngat
Mountains = 2, Eagle Plateau = 3, George Plateau = 4, Cape Breton Highlands = 5, Northern Ungava Peninsula = 6, Thunder Bay-Quetico = 7, Lake
Nipigon = 8, Mecatina Plateau = 9, Central Laurentians = 10, Rainy River = 11, Frontenac Axis = 12, Lac Temiscamingue Lowland = 13, Lake of the
Woods = 14, Paradise River = 15,Winokupu Lake North = 16, SmallwoodReservoir-Michikamau = 17, Goose RiverWest = 18,Mecatina River = 19,
Maguse River Upland = 20).
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prospectivity. These recent studies represent a few of the only
national assessments of ecosystem services in Canada and
focused on: 1) carbon storage (Figure 6A) (Mitchell and
Schuster, 2021); 2) freshwater (Figure 6B) (Mitchell and
Schuster, 2021); 3) nature-based recreation (Figure 6C)
(Mitchell and Schuster, 2021); 4) species at risk (Figure 6D);
and 5) climate-change refugia and climate corridors
(Figure 6E) (Stralberg et al., 2020b).

Carbon Storage
Carbon-rich landscapes represent important conservation
priorities for mitigating climate change through carbon
storage (Mitchell and Schuster, 2021; Sothe et al., 2022).
Mitchell and Schuster, (2021) calculated the total amount of
carbon above- and below-ground using previously published
estimates for forest biomass (Canadian National Forest
Inventory; https://nfi.nfis.org) and soil organic carbon
content (i.e., global SoilGrids dataset) (Hengl and Jesus,
2014), respectively. Estimates for above- and below-ground
carbon concentrations were then summed and re-scaled to
calculate relative carbon storage importance across Canada
(i.e., provision scored 0–1) (Mitchell and Schuster, 2021).
Boreal forests and especially peatlands are highlighted as
important carbon storage areas (Figure 6A).

Freshwater
Freshwater provision services were calculated by identifying
watersheds with high annual run-off that are connected to

regions with high human demand for water (i.e., municipal
consumption, hydropower generation, agriculture, and
industrial activities) as described in Mitchell and Schuster
(2021). High-capacity watersheds that provide freshwater to
higher numbers of demand sources were considered a higher
priority for conservation (i.e., provision scored 0–1) (Mitchell
and Schuster, 2021). Watersheds with high provision scores
mostly occur in southern Canada because demand is
concentrated in urban, agriculture, and industrial areas
(Figure 6B).

Nature-Based Recreation
Nature-based recreation improves human well-being and
raises environmental awareness (Gray et al., 2003). Intact
wilderness areas with forests, mountains, and freshwater
with low human population and road densities are
considered particularly important and were combined by
Mitchell and Schuster, (2021) to calculate the capacity for
ecosystems to provide nature-based recreation (Figure 6C).
Agriculture and urban areas were manually assigned to have
low capacity scores. Demand for nature-based recreation was
based on estimates of nearby population density and
accessibility. The final nature-based recreation map
(i.e., provision scored 0–1) highlights areas with high
“naturalness” that are accessible to large population centres
in southern Ontario, Quebec, British Columbia, and some parts
of Atlantic Canada (Figure 6C). Intact wilderness across most
of Canada’s north yield low provision scores because of limited

FIGURE 6 | Ecosystem servicesmaps for: (A) carbon storage (Mitchell and Schuster, 2021); (B) freshwater provision (Mitchell and Schuster,
2021); (C) nature-based recreation (Mitchell and Schuster, 2021); (D) species at risk ranges and critical habitat; and (E) climate-change refugia
(Stralberg et al., 2020b).
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accessibility, with the notable exception of the current road
network (Figure 6C).

Species at Risk
In Canada, species at risk (SAR) are legally protected against
intentional harming or killing on federal lands, and in some
cases, on additional public and private lands (Turcotte and
Kermany, 2021). Protecting SAR through expansions of the
protected area network represents an important component of
plans for halting and reversing the trend of declining
biodiversity in Canada (Coristine and Jacob 2018; Turcotte
and Kermany, 2021). Herein we used the estimated range
extents of 488 SAR published by Environment and Climate
Change Canada (https://data.ec.gc.ca/data), which were
originally sourced from data provided by NatureServe,
Environment Canada, and Committee on the Status of
Endangered Wildlife in Canada (COSEWIC) reports.
Geometry errors were fixed and the ranges of sub-species
units were combined prior to calculating the number of SAR
with ranges overlapping each H3 cell (Figure 6D). The number
of SAR for each H3 cell were then re-scaled (i.e., 0–1) and
combined with designated Critical Habitat identified by
Environment and Climate Change Canada to protect SAR
(i.e., Critical Habitat was manually assigned a score of 1).
Combining both datasets (i.e., SAR ranges and Critical Habitat)
was required because most of the designated Critical Habitat
occurs in the boreal forest and does not overlap with the large
number of SAR that occur in southern Canada (e.g., prairies
and southern Ontario; Figure 6D).

Climate-Change Refugia and Corridors
Climate-change refugia are areas that are “relatively buffered”
against anthropogenic climate change (Morelli and Daly,.
2016), providing greater potential for species and
ecosystems to persist into the future. As such they
represent efficient conservation investments and are
considered a high priority for protecting biodiversity in the
future (Keppel et al., 2015; Morelli and Daly, 2016, 2020;
Michalak et al., 2018; Stralberg and Arseneault, 2020a). At a
broad scale, (macro)refugia are mostly associated with areas
of high topographic heterogeneity, steep climate gradients,
and/or a slower rate of warming due to factors like coastal
temperature buffering. Stralberg et al. (2020b) recently
reported a systematic assessment of climate-informed
conservation priorities across North America, considering
multiple conservation objectives that were integrated using
the Zonation algorithm (Moilanen 2007): 1) a species-neutral
index of climate-type macro-refugia, 2) songbird macro-
refugia, 3) tree macro-refugia, 4) climate corridors
(i.e., multi-species migration routes), and 5) environmental
diversity as a surrogate for microrefugia. Urban and other
areas disturbed by human activity (e.g., agriculture) were
excluded from the analysis using a previously published
human development dataset (Venter and Sanderson, 2016)
as described in Stralberg et al. (2020b). The full scenario
prioritization (i.e., all objectives combined without biome
stratification) rescaled to range from 0 to 1 provides an

assessment of the potential for multi-species climate-
change refugia across most of North America (Figure 6E).
Missing data from this analysis are due to some of the
limitations of current range data in Canada’s arctic. To
remedy this, climate-change refugia from the Michalak et al.
(2018) climate-analog model were manually assigned a value
of one and used to fill data gaps in the north. Although these
two studies used different methods, they both represent
metrics of climate-tracking potential based on end-of-
century climate model projections under the assumption of
continued high greenhouse gas emissions (i.e., RCP = 8.5;
Representative Concentration Pathway). All other remaining
missing values were imputed with the mean of Stralberg et al.
(2020b).

Combined Conservation Data
Two different approaches were taken to combine the five
ecosystem services (i.e., freshwater, carbon, nature-based
recreation, SAR, climate-change refugia) and the protected-
area gap-analysis. First, all six conservation datasets were
summed together to give an overall score. This simple sum
approach highlights poorly protected ecoregions with more
ecosystem services (Supplementary Figure 7A). The second
method uses a fuzzy gamma operator to combine
conservation datasets (Moon and An 1991):

Fuzzy gamma (γ) � (∏n

i�1μi)
1−γ

(1 −∏n

i�1(1 − μi))
γ

where µi is the value for the ith map of the standardized map
inputs to be combined (n = 6) and γ is a value between 0 and 1.

The fuzzy gamma operator penalizes missing ecosystem
services using a product function, which is distinct from the
increasing tendency of the simple sum operator. Bothmethods
represent simple approaches to visualize the spatial overlap
between disparate datasets (Supplementary Figure S7). The
final combined conservation dataset is based on a γ value of
0.85 to balance the increasing tendency of the simple sum
operator and the decreasing tendency of the product function
(Supplementary Figure S7B).

RESULTS

Prospectivity Modelling Results
Two different prospectivity models for magmatic Ni (± Cu ±
Co ± PGE) mineral systems are presented in Figure 7 and
reported in Electronic Supplementary Tables S1–S5. The
“preferred” prospectivity model is based on the best
available datasets, including bedrock geological maps that
are negatively impacted by unconsolidated surficial cover
(Figure 7A); whereas the “baseline” prospectivity model was
trained using only the geophysics data and is thus the least
impacted by surface sampling bias (Figure 7B). Prospectivity
scores for areas covered by unconsolidated sediments in the
preferredmodel likely underestimate the truemineral potential.
The preferred prospectivity model is also expected to perform
poorly for remobilized mineral system subtypes that are
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spatially decoupled from their source rocks. Both models
(i.e., baseline and preferred) were trained and tested using
the same blocks as part of spatial cross-validation
(Supplementary Figure S2). All prospectivity model results
are reported in Supplementary Tables S2–S5.

The best-performing baseline model comprises 68 trees,
tree depth of three, and eight leaves (minimum andmaximum).
The AUC for the baseline model on the ROC plot is 0.967,
reducing the search space for 90% of deposits within the
training and test set by 85% and 80%, respectively
(Supplementary Figure S6). In contrast, the preferred GBM
model is based on 40 trees, tree depth of five, and
25–32 leaves. The AUC for the preferred model on the ROC
plot is 0.972, reducing the search space for 90% of deposits in
the training and test set by 94% and 89%, respectively
(Supplementary Figure S6). Geological datasets included
within the preferred prospectivity model reduce the mineral
exploration search space by a further 9% relative to the
baseline model. The preferred prospectivity model also
reduces the search space for 90% of mineral occurrences
by 86%, which is 17% better than the baseline model
performance (i.e., the baseline model reduces the search
space for 90% of mineral occurrences by 69%). Overall, the
high AUC (0.955) for the test set, which was not used during
training, suggests that the preferred GBM model can predict
“unknown” areas with good classification performance
(Supplementary Figure S6). Parts of the Yukon and
southwest British Columbia yield the greatest variability for
the preferred prospectivity model (Supplementary Figure S4),
possibly because of the limited number of training data in
western Canada.

Variable importance for the preferred prospectivity model
provides some additional insight into the model quality and
results (Supplementary Figure S5). For example, the presence
or absence of mafic intrusions yields the highest variable
importance for the preferred model (Supplementary Figure
S5). These raremafic to ultramafic rocks represent the sources
of magmatic Ni (± Cu ± Co ± PGE) mineral systems and are
based, in part, on map unit descriptions within provincial and
territorial map databases as described in Lawley and
McCafferty. (2022). The top five variables for the preferred
GBM model ranked in order of importance are: 1) presence or
absence of mafic rocks (mineral system source), 2) maximum
geological period (mineral system driver), 3) lithology (mineral
system source), 4) magnetic HGM (mineral system pathway),
and satellite gravity (mineral system pathway).

Prospectivity of Protected Areas
Based on the Youden Index (Baddeley and Brown, 2021)
threshold (Supplementary Figure S3), we demonstrate that
approximately 16% of the most prospective H3 cells partially
overlap with the existing protected network as defined by the
CPAD. The vast majority of these protected and prospective
H3 cells occur in smaller and mostly isolated conservation
areas in southern Quebec (43%), southern Ontario (30%),
Northwest Territories (6%) and parts of Labrador (6%). The
true area overlap is likely less than these estimates because
H3 cells that partially overlap with protected areas were
included for the purposes of our analysis. Moreover, the
CPCAD includes a range of protected area types (e.g., 4% of
partially overlapping conservation areas are classified as other
effective area based conservation measures rather than

FIGURE 7 | (A) Preferred prospectivity model for magmatic Ni (± Cu ± Co ± PGE) mineral system based on the GBM method and the best
available datasets; (B) baseline prospectivity model using geophysics-only data. The baseline model is the least impacted by surface sampling
bias. Both prospectivity models yield good to excellent classification performance; however the preferredmodel reduces themineral exploration
search for the training and test set by 94% and 89% respectively.
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TABLE 1 | Top five most prospective ecoregions for each protected area classification.

Ecosystem Servicesc

Ecoregion name Protectiona Prospectivityb Carbon storage Freshwater Nature-based recreation Species at risk Climate-change refugia

Kingurutuk-Fraser Rivers Good protection 0.67 0.07 0.00 0.26 1.00 0.88
Torngat Mountains Good protection 0.37 0.08 0.00 0.27 0.10 0.65
Eagle Plateau Good protection 0.29 0.09 0.00 0.28 0.97 0.87
George Plateau Good protection 0.26 0.09 0.00 0.27 0.11 0.57
Cape Breton Highlands Good protection 0.24 0.11 0.00 0.33 0.29 0.75
Northern Ungava Peninsula Moderate protection 0.54 0.13 0.00 0.27 0.06 0.78
Thunder Bay-Quetico Moderate protection 0.54 0.06 0.42 0.40 0.29 0.46
Lake Nipigon Moderate protection 0.50 0.06 0.46 0.37 0.66 0.47
Mecatina Plateau Moderate protection 0.37 0.10 0.00 0.28 0.96 0.75
Central Laurentians Moderate protection 0.36 0.17 0.00 0.31 1.00 0.75
Rainy River Poor protection 0.57 0.09 0.24 0.25 0.42 0.48
Frontenac Axis Poor protection 0.53 0.06 0.28 0.28 1.00 0.45
Lac Temiscamingue Lowland Poor protection 0.44 0.08 0.50 0.42 0.36 0.63
Lake of the Woods Poor protection 0.44 0.13 0.24 0.38 0.32 0.60
Paradise River Poor protection 0.44 0.10 0.00 0.30 0.69 0.81
Winokupu Lake North Unprotected 0.59 0.08 0.01 0.28 1.00 0.73
Smallwood Reservoir-Michikamau Unprotected 0.38 0.08 0.16 0.29 0.63 0.61
Goose River West Unprotected 0.37 0.07 0.00 0.29 1.00 0.79
Mecatina River Unprotected 0.36 0.09 0.01 0.27 0.64 0.81
Maguse River Upland Unprotected 0.28 0.19 0.00 0.27 0.06 0.46

aProtection classified as good (>30%), moderate (15–30%), poor (1–15%), and unprotected (<1%) relative to the post-2020 Global Biodiversity Framework.
bMean prospectivity for each ecoregion based on the preferred magmatic mineral system model.
cMean ecosystem services scores for each ecoregion re-scaled to between 0 and 1.
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official protected areas recognized by the International Union
for Conservation of Nature) and protective status (e.g., 1%
and <1% of prospective H3 cells in conserved areas have an
Interim or Proposed status, respectively; whereas 14% and 85%
are Established or Designated, respectively). The amount of
overlap with protected areas also depends on the selected
prospectivity threshold, with higher thresholds leading to less
overlap with the CPCAD but at the risk of excluding prospective
H3 cells.

Protected-Area Gap Analysis
Most ecoregions in Canada are classified as poorly protected
relative to the post-2020 Global Biodiversity Framework
(i.e., conserving 30% of land by 2030) and several
ecoregions remain unprotected (Figure 5A). These poorly
protected and unprotected ecoregions and ecodistricts
(Figure 5B) are considered to be higher priority for new or
expansions of the protected area network (Coristine and
Jacob, 2018) and occur in western Labrador, southern
Ontario, Yukon, and Nunavut (Figure 5A). The few
ecoregions that exceed the national conservation targets
mostly occur in British Columbia and Northern Canada
(Figure 5A), where protected areas tend to be larger and
better connected (Figure 4A). The top 5 most prospective
ecoregions for each protection classification are presented
in Table 1.

Ecosystem Services
Previously published maps of ecosystem services highlight
high-capacity ecosystems offering the most direct benefits to
people (Mitchell and Schuster,. 2021), habitats for species at
risk, or climate-change adaption potential (Stralberg et al.,
2020b). The spatial overlap between these ecosystems
services and the prospectivity modelling results are
evaluated as individual hotspot maps (i.e., top 20% of
ecosystem services, preferred prospectivity model results, or
both; Figure 8); whereas the combined conservation values
and prospectivity model results are evaluated using a bivariate
choropleth map (i.e., combined ecosystem services values and
preferred prospectivity model results discretized into
quantiles; Figure 9) and a combined hotspot map (i.e., top
10% of combined ecosystem services values, preferred
prospectivity model results, or both; Figure 10). Comparing
these hotspots using multiple cut-off provides additional
insight into the results (Figures 8–10), with the highest
prospectivity values interpreted as the most likely places for
future critical mineral development (Figure 10). Hotspots for
individual ecosystem services occur across Canada but are
concentrated in parts of southern Ontario and Quebec, western
Labrador, northern Manitoba and Saskatchewan, and
southeast British Columbia (Figure 8), where high capacity
ecosystems provide direct benefits to people (Figure 6).
Freshwater and SAR are the ecosystem services that yield

FIGURE 8 | (A–E) Hotspotsmaps showing H3 cells with high prospectivity, ecosystem services, or both (i.e., hotspot). Colours are based on
the cut-off for the top 20% of prospectivity values and ecosystem services. These quantile-based cut-offs were calculated after excluding
missing or manually assigned values.
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the most spatial overlap with prospective H3 cells (Figures
8B,D). Both of these ecosystem services tend to be
concentrated in southern Canada and, when combined with
important climate-change refugia in forested regions
(Figure 6E) and the decreasing protection status of
ecoregions from north to south (Figure 5A), highlight the
areas of Canada with the highest potential for conflicting
land-use priorities in the future (Figure 9). The top five most
prospective ecoregions are reported alongside their mean
ecosystem services values in Table 1.

DISCUSSION

Evaluating Canada’s Geological Potential for
Battery Minerals
Herein we demonstrate Canada’s geological potential for
discovering new magmatic Ni (± Cu ± Co ± PGE) mineral
systems using the locations of known mineral deposits and
occurrences as training data. The resulting prospectivity
modelling predictions are distinct from the maps that have
been used in most previous conservation assessments which
depict the surficial expression of known deposits (Maus and
Gilijumm, 2020) or mineral claims (Coristine and Jacob, 2018).
We focus on Canada’s main source of battery minerals, i.e., Ni

and Co, even though these critical minerals can be sourced
from multiple mineral systems (Gadd and Lawley, 2022). The
prospectivity of Ni and Co are coupled because the
concentrations of these elements are primarily controlled by
the modal abundance of pentlandite and pyrrhotite within
these magmatic mineral systems; whereas Cu and PGE are
hosted by different mineral assemblages and may be spatially
decoupled). As expected, we interpret areas with the highest Ni
and Co potential (Figure 7) to be closely clustered with, or
represent extensions of, established mining districts within the
Superior and Churchill geological provinces (Figure 4C). For
example, ultramafic to mafic intrusions in northern Ontario,
Quebec, Manitoba, Saskatchewan, and Labrador are
interpreted as highly prospective for komatiite-hosted
deposits, a particular sub-type of magmatic Ni (± Cu ± Co ±
PGE)minerals systems that are unique to periods of hotmantle
temperatures and extensive partial melting during the Archean
and Paleoproterozoic (Barnes et al., 2016). The impact of this
mineral system driver on the prospectivity results is reflected
by the high variable importance for geological time in the
preferred model (Supplementary Figure S5).
Paleoproterozoic komatiite-hosted deposits related to these
major melting events in northern Quebec and Manitoba are
host to some of Canada’s largest operating Ni mines (e.g.,
Raglan, Quebec; Thompson, Manitoba; Figure 4B). Areas

FIGURE 9 | Bivariate choropleth map showing the preferred prospectivity model for magmatic Ni (± Cu ± Co ± PGE) mineral systems and all
five ecosystem services combined using a fuzzy gamma operator. The colour legend is based on quantile scaling for both data axes, which
overestimates the extent of the most prospective H3 cells. Area with the potential for conflicting land use priorities include parts of southern
Ontario, southern Quebec, Labrador, and southern British Columbia.
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between southern Quebec and Labrador are also interpreted as
prospective due to several smaller deposits and mineral
occurrences associated with Meso- to Neoproterozoic
intrusions within the Grenville geological province or the
giant troctolite-hosted Voisey’s Bay mine in Labrador
(Figure 4B). Unlike the large Archean to Paleoproterozoic
magmatic Ni (± Cu ± Co ± PGE) mineral systems that
formed during continental breakup and rifting, deposits in
the Grenville geological province are associated with arc-
magmatism as the primary driver (Sappin et al., 2011).
Smaller, arc-related mineral systems also likely occur in
Nunavut (e.g., Ferguson Lake) (Acosta-Góngora et al., 2018).
Overall, the preferred prospectivity model highlights the high
mineral potential of the geological provinces comprising the
Canadian shield (e.g., Superior, Churchill, Grenville) even
though the drivers and host rocks vary for each mineral
system sub-type. These areas with high prospectivity scores
(Figure 7) and low model uncertainty (Supplementary Figure
S4) can be used to support exploration for new sources of the
critical minerals used to manufacture batteries for electric
vehicles.

In contrast to the areas of high mineral potential discussed
above, the western Canada sedimentary basin in Manitoba,

Saskatchewan, Alberta, and British Columbia are interpreted to
yield some of the lowest prospectivity scores overall (Figure 7).
Areas with the lowest prospectivity scores correspond to thick
sequences of Phanerozoic sedimentary rocks that are known
for their oil and gas potential but are unprospective for Ni and
Co. Parts of Saskatchewan and Alberta that yield low
prospectivity scores and high model uncertainty are
interpreted to reflect prospective mineral pathways buried by
unprospective sedimentary rocks (Supplementary Figure S4).
This interpretation could also explain the high model
uncertainty along the Hudson Bay in northern Ontario and
Manitoba and undifferentiated gneisses in mainland
Nunavut. Similarly, large swaths of the western Cordillera
geological province yield low prospectivity scores and
variable model uncertainty, with the important exception of
small mafic to ultramafic intrusions that host Alaska-type Ni ±
Cu deposits (Nixon and Rublee 1987; Nixon et al., 1990;
Milidragovic et al., 2021). Giant Mascot, Turnagain, and
Polaris represent major Canadian examples of this mineral
system sub-type that tend to be associated with arc-related
intrusions (e.g., Tulameen; Figure 4B). The relatively small
number of deposits and occurrences available for training
for this mineral system sub-type is interpreted as the most

FIGURE 10 | (A)National hotspot map showing H3 cells with high prospectivity, poorly protected ecosystem services, or both (i.e., hotspot).
Colours are based on percentile scaling (top 10%) after excluding missing or manually assigned values; (B) bar plot showing the range overlap
(%) between species at risk and the most prospective H3 cells. These species at risk are the most likely to be impacted by new battery mineral
exploration and development based on their estimated ranges; (C) hotspot map for southern Ontario and Quebec; (D) hotspot map for
northern Manitoba and Saskatchewan. First nation offices, as registered in the Indigenous Services Canada (ISC) Band Governance
Management System (BGMS), show some of the traditional territories of Indigenous peoples.
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likely cause for high model uncertainty in westernmost Canada
(Supplementary Figure S4).

Balancing Critical Mineral Development With
Conservation and Biodiversity Values
As a signatory to the international Convention on Biological
Diversity (CBD), Canada has committed to protecting 30% of its
land and sea by 2030, which builds on the previous Aichi Target
11 (i.e., protecting 17% of land and freshwater by 2020). At the
end of 2021, Canada is estimated to have conserved just 13.5%
of its terrestrial area and inland water through its network of
Protected Areas or other effective area-based conservation
measures. Rapid expansion of the current protected area
network is thus required to meet terrestrial conservation
targets (Coristine and Jacob 2018). Several recent studies
have discussed some of the different objectives, or
principles, that need to be considered for prioritizing future
conservation areas (e.g., representative ecosystems, intact
wilderness, connectivity, SAR, and climate-change refugia)
(Coristine and Jacob 2018; Kraus and Hebb 2020; Stralberg
and Arseneault, 2020a, b; Carroll and Ray 2021; Mitchell and
Schuster, 2021; Dreiss et al., 2022; Hamilton and Smyth 2022).
These and other studies further highlight the essential role of
consultation, engagement, and partnerships with Indigenous
peoples in the development and application of all land-use
planning (Artelle et al., 2019; Schuster et al., 2019; Zurba et al.,
2019). In Canada, the duty to consult Indigenous peoples is
protected by law and the federal conservation strategy
specifically mentions that new Indigenous Protected and
Conserved Areas (IPCAs) are needed to meet national
conservation targets.

The results of our overlay analysis demonstrate that the
vast majority of the most prospective H3 cells are
associated with poorly protected (66%) or unprotected
(11%) ecoregions, suggesting that expansions of the
protected area network will need to be balanced with new
critical mineral development (Table 1). Areas with one or
more essential ecosystem services represent the parts of
those poorly protected to unprotected ecoregions where
conflicting land-use priorities between conservation
values and resource extraction are most likely to occur in
the future (Table 1). For example, parts of the boreal forest
containing critical habitat for SAR (Festa-Bianchet et al.,
2011; Venier and Thompson 2014), essential ecosystem
services (Mitchell and Schuster, 2021), and poor
ecological representation by the current protected area
network (Venier and Thompson 2014; Coristine and
Jacob, 2018) are highlighted in Figure 9 as potential
hotspots for new critical mineral development.
Prospective areas in southern Ontario and Québec and
northern Manitoba and Saskatchewan are identified as
particularly important hotspots within the context of
Canada’s battery minerals (Figures 10C,D). The combined
data can further be used to develop environmental
management strategies prior to critical mineral
exploration and development. For example, the estimated

ranges of SAR can be used to predict the individual species
that are most likely to be impacted by battery mineral
development in the future, including woodland caribou
and multiple species of birds (Figure 10B). Risk
management strategies can be customized to reduce the
environmental and ecological pressures for these already
threatened species.

The environmental threats associated with human
activities, as well as gaps in the protected area network,
led Kraus and Hebb (2020) to suggest that many of
Canada’s southern ecoregions are in crisis. The
combined data presented herein further suggest that
several of these already threatened ecoregions are also
potential hotspots for new battery mineral exploration and
development. Prospective H3 cells that occur within poorly
protected ecoregions are associated with relatively high
ecological and environmental risks for new critical mineral
exploration and development. New development in these
ecoregions would need to be carefully managed, guided by
ESG best practices, and would necessarily include
Indigenous peoples whose traditional lands are affected.
In contrast, the statutory obligations and other
conservation measures within the most protected
ecoregions have the potential to lower the ecological
and environmental risk of new critical mineral
exploration or development if supported by ESG best
practices for individual projects. Some of the technology
to mitigate environmental impacts of critical mineral
production exist or are being actively developed (Aznar-
Sánchez et al., 2019). Focusing mineral exploration
expenditures within better protected ecoregions with
lower ecological risk also has the potential to lower the
financial cost of exploration and development when
compared to areas that require more planning,
management, and mediation. For example, ecoregions
around the Raglan mine are well represented by the
current protected area network, corresponding to more
than half of the post-2020 Global Biodiversity Framework
conservation target (Figures 4A, 5A). Prospective H3 cells
around the northern boundary of the Superior geological
province are thus interpreted to be associated with lower
ecological risk relative to other parts of Canada. The
Raglan mining district also represents one of the few
prospective regions identified in the current study with a
signed impact and benefits agreement between the mining
corporation, Makivik Corporation, Salluit, and Kangiqsujuaq.
This agreement describes how mining royalties are to be
shared with Inuit communities, gives preference to Inuit
business, creates other local economic and training
opportunities, and puts measures in place to protect the
environment (Rodon and Lévesque 2015).

Green Mining Starts With Green Exploration
The likelihood that a mineral exploration project ultimately
goes into production depends on a large number of social,
political, economic, technical, and environmental factors
(Figure 1). However, most practical applications of

Earth Science, Systems and Society | The Geological Society of London December 2022 | Volume 2 | Article 1006415

Lawley et al. Green Economic Pathways



prospectivity modelling have tended to focus on geological
favourability, rather than including the economic and/or
technical constraints that are known to have a dramatic
impact on the overall assessment of mineral potential
(Walsh et al., 2020, 2021). The BlueCap simulator, a
recent pre-scoping analytical tool deployed in Australia
(Walsh et al., 2020), addressed that knowledge gap by
allowing proximity to infrastructure, access to energy and
water, tax schemes, and cover thickness to be considered
during the mineral exploration targeting stage, focusing
mineral exploration expenditures to the most geological
and economically favourable areas (Figure 1).
Environmental, ecological, and/or conservation priorities
have, so far, not been included in these pre-scoping
analytical tools or most previous national mineral
potential assessments (Figure 1) (Lisitsin et al., 2013;
Bide et al., 2022) although the approach adopted herein
could similarly be applied in Australia, the U.S., and
elsewhere. As discussed above, low ESG performance
now presents significant financial cost and risk to the
supply chains of critical minerals globally (Franks et al.,
2014; Jowitt et al., 2020; Lèbre and Stringer. 2020; UNECE
2021b).

Recent progress on incorporating environmental and
other ESG factors into the definition of a mineral
resource has the potential to change that trend, and
potentially lead to a range of positive societal and
environmental outcomes. For example, the United
Nations Framework Classification for Resources (UNFC)
considers ESG to assess the viability of any potential
mining project through its life cycle (UNECE 2021a, b;
Bide et al., 2022). Each ESG recommendation is linked
to the United Nations sustainability goals, including the
goal to protect, restore, and promote sustainable use of
terrestrial ecosystems (SDG15). Improving the
environmental impact of any new critical mineral
development is essential because the extraction and
processing of natural resources represents the major
contributor to biodiversity loss and water stress globally
(IRP 2019). Whilst the majority of these losses in
biodiversity are occurring in countries other than
Canada, integrated landscape planning is an essential
tool for responsible natural resource management.

Some of the ecosystem services data needed tomake these
types of national assessments already exist in the
environmental, ecological, and conservation research
literature (Coristine and Jacob, 2018; Stralberg et al., 2020b;
Jung and Arnell, 2021; Mitchell and Schuster, 2021). Several
recent studies have also mapped multiple ESG dimensions
using global datasets (Lèbre et al., 2019, 2020; Sonter et al.,
2020). Continued progress on frameworks for modelling and
predicting environmental and ecological risks with climate
change require continued support (Lemieux and Scott 2005;
Coristine and Kerr 2011; Dietze and Fox, 2018; McIntire and
Chubaty, 2022) because many of the required datasets are
either missing (e.g, quality of freshwater habitats and
invertebrate biodiversity) or incomplete for large parts of

Canada and globally (Brooks and Mittermeier, 2006;
Coristine and Jacob, 2018). The United Nations Resource
Management System has identified that these types of data
gaps represent a major obstacle for managing and modelling
the dynamic ESG that are essential for sustainable
development (UNECE 2021b). We also emphasize that the
current study excluded many of the ESG dimensions and
data that would need to go into an integrated resource
management strategy. In particular, identified areas of high
battery mineral potential occur on the traditional territories of
Indigenous nations and communities (Figures 10C,D).
Respectful engagement and reciprocal relationships with
Indigenous partners will be essential for conserving
biodiversity and any critical mineral exploration and
development (Artelle et al., 2019; Schuster et al., 2019).
While there is precedent for exploration and extraction
partnership agreements in Canada that can help to inform
new initiatives, each new partnership will be strongly informed
by relevant Indigenous rights holders’ social and environmental
requirements.

CONCLUSION

New sources of critical minerals will be required to meet the
projected demand of renewable energy technologies.
However, the potential impact of increased critical
mineral exploration and development on already
threatened habits is difficult to evaluate without accurate
predictions on where new mineral deposits are most likely
to be discovered. Herein we have addressed that knowledge
gap by using machine learning to predict the geological
potential for magmatic Ni (± Cu ± Co ± PGE) mineral
systems, which represent an important source for Ni and
Co in Canada. New critical mineral development within
poorly protected ecoregions with one or more essential
ecosystem services (i.e., freshwater, carbon, nature-
based recreation, SAR, and climate-change refugia)
represent areas with the highest potential for conflicting
land-use priorities in the future. In contrast, the legal
protections and other conservation measures in place
within well protected ecoregions have the potential to
lower the ecological and environmental risk of new
critical mineral exploration if individual projects are
guided by ESG best practices. These public data and
model results can be used by Indigenous peoples and
other communities to assess economic opportunities
and/or as input into broader land-use planning prior to
critical mineral exploration and development. The
application of artificial intelligence to lower the
ecological and environmental risks of the natural
resources sector could ultimately form part of the
strategy towards the sustainable development of critical
minerals. New actions to improve the ESG performance of
mineral exploration and development are urgently needed
to secure critical mineral supply chains and meet global
climate goals.
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