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Rapid urbanisation over the years has led to the loss of natural land cover, thereby
affecting Land Surface Temperature (LST) distribution in urban areas. This study aims
to analyse LST anomalies (calculated as the deviation from the normal) over selected
Indian cities and check if critical land cover changes can be identified. LST from
Landsat Thermal Infrared (TIR) images acquired in March, April and May from 1988 to
2020 were used to estimate LST anomalies. Positive LST anomalies were observed
mainly over barren and impervious areas; however, some areas showed a negative
anomaly where the barren lands were converted to vegetated areas. The study has
demonstrated that while some developed areas exhibit a positive anomaly indicative of
significant changes or development, there are instances where the conversion of
barren land to developed (i.e. built up) areas has resulted in a negative anomaly.
Developed areas that are closer to the water creek or mangroves were associated with
lower anomaly values indicating the cooling effect of the water body and vegetation.
Conversely, the core urban areas generally exhibited higher LST values with positive
anomalies indicating a warming effect. These findings can be used by city planners to
identify hotspot areas and develop more effective strategies and policies to address
the challenges of urban heat. They also highlight the regions that require infrastructural
resources and policy changes to reduce the temperature.

Keywords: Land Surface Temperature anomaly, surface urban heat island, landcover change, remote sensing, green
infrastructure

INTRODUCTION

Urban areas are the engines of economic growth and the number of people living in urban areas is
increasing continuously worldwide. Urban land cover is undergoing continuous transformation
due to the increasing population and the need for better facilities. The development of new urban
features such as buildings, roads, etc., often leads to the conversion of natural surfaces into non-
evaporating, impervious surfaces, which affect the energy balance at the surface (Yuan and
Bauer, 2006). As a result, the temperature in urban areas is higher than in peripheral suburban
areas, and this phenomenon is known as the urban heat island (UHI) effect (Chen et al., 2023).
Changes in land use and land cover (LULC) during the process of urbanisation play a significant
role in determining the spatial distribution of land surface temperature (LST). This has been
demonstrated in real-world examples, such as the expansion of buildings and roads and the
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reduction of water bodies, trees, and agricultural land. These
observations support the notion that LULC changes are
responsible for the UHI effect (Zhao et al., 2017). The
thermal characteristics of the urban surface materials and
the lack of surface evaporation increase the outgoing
longwave radiation resulting in increased LST over urban
areas (Dousset and Luvall, 2019; Li et al., 2019). This
increased LST over urban areas compared to the
surrounding rural areas is commonly known as the Surface
Urban Heat Island (SUHI) effect and can be detected using
thermal infrared sensors aboard various satellites (Deilami
et al., 2018; Zhou et al., 2018). Traditionally, SUHI is defined
as the difference in LST observed over urban and rural areas
(Shastri and Ghosh, 2019), which suggests that the SUHI
intensity (SUHII) also depends on the surface conditions of
the pixels classified as rural in the analysis. Although SUHII is a
useful indicator of urbanisation, it may not help in planning
urban heat mitigation measures in different parts of a city
(Martilli et al., 2020). In many developing countries, urban
development often takes place in an unplanned manner
leading to a lack of proper information for the city planning
authority. For better planning, city planners need to understand
how a given area’s thermal conditions change over time and
relative to other areas of a city. Understanding how LST are
structured across the urban landscape can help enhance
sustainability. Landscape changes from vegetation to the
built environment associated with urbanisation processes
have been linked to an increase in urban LST (Stewart and
Kremer, 2022). Multi-temporal land cover maps are widely
used to identify spatiotemporal changes in urban land cover.
However, manually inferring thermal conditions from land
cover maps is difficult. Furthermore, errors in each land
cover map can be compounded, leading to reduced
accuracy of the land cover change map (Zhu, 2017). Keith
et al. (2019) mentioned that planners find it challenging to infer
details from satellite images and a more direct representation
of the thermal conditions of a city is needed to aid planners.
Therefore, it is necessary to clearly identify the spatiotemporal
changes in the thermal characteristics of cities at a finer level.
This becomes even more critical during the planning or
evaluation phase of heat mitigation measures.

LST is one of the indicators used to examine the thermal
heterogeneity of the Earth’s surface and the impact on surface
temperatures of natural and human-induced changes (Mildrexler
et al., 2018). Previous studies (Julien and Sobrino, 2008;
Mildrexler et al., 2009; Sobrino and Raissouni, 2010) have
combined LST with vegetation indices to map land cover
changes with 1 km spatial resolution on annual time scales.
Time series analysis of LST from the MODIS sensor has been
used to identify changes in wetlands over Tanzania (Muro et al.,
2018) and Mildrexler et al. (2018) demonstrated that anomalies
in annual maximum LST could indicate regions affected by
drought, heatwaves, forest loss and ice melt. The change in
urban land cover will affect the normal LST conditions
experienced over a given area, causing a change in the
magnitude and/or direction of the LST anomaly. Therefore,
LST anomalies can signal a change in land cover conditions

and indicate whether an area is warmer or cooler. This study
aims to test whether LST anomalies can identify changes in land
cover and thermal conditions over urban areas. Focussing on
changing thermal regimes has the potential to detect shifts in
ecosystems towards thresholds of profound change (Grumm
and Hart, 2001). LST data from Landsat thermal infrared (TIR)
images acquired during summer (March, April and May) from
1988 to 2020was used to estimate LST anomalies. LST is high in
summer because impervious surfaces can increase the surface
sensible heat flux, which in turn increases LST (Han et al., 2022).
This study evaluates summer LST anomalies to understand
extreme heat situations, thus paving the way to prepare a
master plan for a resilient city that can adapt to heat stress.
The information can be used to prioritise the allocation of
resources for green infrastructure, such as parks and trees, in
areas most susceptible to heat stress. It can help city planners
make informed decisions about where to focus their efforts and
resources as they develop their heat resilience master plans.

STUDY AREA AND DATASETS

The Chennai Metropolitan area and the Navi Mumbai Municipal
corporation area located in the Indian states of Tamil Nadu and
Maharashtra respectively were selected for the study (Figure 1).
Both of these coastal cities are unique urban centres because of
the varying land cover/land use conditions and the rich
biodiversity. In Chennai, the minimum air temperature varies
between 17°C and 25°C and the maximum air temperature
ranges from 30°C to 38°C. Over Navi Mumbai, the
temperature is between 17°C and 20°C in the winter while the
summer temperature ranges from 36°C to 41°C. The month of
May generally records the annualmaximum temperature in both
cities. Navi Mumbai is bordered by mangroves on the west
(creek side) and hills on the east side respectively. Similarly,
Chennai has a biodiversity-rich national park and three rivers
within the city. These natural elements play an important role in
defining the local climate in both of these cities.

The majority of the previous studies to identify land cover
change using LST have used MODIS or AVHRR data at 1 km
resolution. However, over urban areas, this spatial resolution
may not be sufficient to identify finer changes so data from the
Landsat series of satellites acquired from 1988 to 2020 were
used in the present study. Data acquired during March, April
and May in each year were used for the analysis as this
increased the chance of obtaining clear sky images and
also coincided with the months when higher LST and air
temperatures were observed. Thermal infrared radiance was
obtained from the level-1 product and surface reflectance in
the visible and near-infrared bands was obtained from the
corresponding level-2 datasets.

We also used LULCmaps for the years 1990, 2000, 2010, and
2017 over Navi Mumbai. The LULC maps were created with
Landsat data at 30 m resolution using the Supervised Maximum
Likelihood Classifier (SMLC). The SMLC assigns a pixel to a
specific class based on itsmaximum possible occurrence in that
class based on the training data. Mainly, five classes were
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classified including water bodies, mangroves, other vegetation,
developed (i.e. built up) areas, and barren land. Although many
advanced machine learning algorithms exist for land cover
classification, the classic SMLC was used as its ability to
produce relatively accurate land cover maps is well
established. In addition, in this case, the land cover
classification scheme had only five classes, which were easily
distinguishable by the algorithm using the multispectral Landsat
data. The training and validation data were obtained fromGoogle
Earth Engine (GEE). These LULC maps were used by Azeez et al.
(2022) to identify mangrove areas over Navi Mumbai and in this
study, we have used the LULCmaps to identify the urban growth.
The overall accuracy of the land cover maps was found to be
more than 85% for all the years. Additional details about the
creation of LULC maps and their accuracy assessment can be
obtained from Azeez et al. (2022).

METHODOLOGY

The different steps followed in this study are described in this
section. The entire analysis was performed on the GEE
platform using Landsat images with a pixel size of 30 m.

Retrieval of LST
The LST required for the study was retrieved from Landsat
level-1 product using the Statistical Mono Window Algorithm
(SMWA), which is based on the empirical relationship between
Top of the Atmosphere (TOA) brightness temperature in a
single thermal band, land surface emissivity in the
corresponding band and LST (Ermida et al., 2020). The
surface emissivity required for the LST retrieval was
obtained using a modified vegetation index (VI) based
model (Kodimalar et al., 2020). The retrieved LST was not
validated due to the lack of any in situ thermal radiometer data
over the study areas. However, the models used for the
retrieval of emissivity and LST were found to retrieve LST
with accuracy better than that of the Landsat-level 2 surface
temperature product (Harod et al., 2021) and hence were used
in this study. LST values were estimated for all clear sky
images in March, April and May and a 3-month average
available LST was estimated for the two study regions. This
3-month average LST was used for further analysis.

LST Anomaly
We defined LST anomalies in both spatial and temporal
domains. For the temporal LST anomaly, the long-term

FIGURE 1 | Study Area - (A) Chennai and (B) Navi Mumbai (Image source: Google Earth).

Earth Science, Systems and Society | The Geological Society of London August 2024 | Volume 4 | Article 100963

Roy et al. Surface Temperature and Urban Change



temporal mean (LSTmean) and standard deviation (LSTstd) of
LST from 1988 to 2020 were estimated for each pixel over the
study area from all available valid LST values. Then, the
standardised temporal LST anomaly (LSTT

ano) for each year
(i) from 1988 to 2020 was calculated as given in Equation 1.

LSTT
ano i[ ] � LST i[ ] − LSTmean

LSTstd
(1)

where LST [i] represents the 3-month average LST for each
year. The LSTT

ano represents the number of standard deviations
by which the anomaly deviates from the long-term normal,
providing information on the relative significance of
anomalous features and how they vary across different land
cover types (Mildrexler et al., 2018). The time series of LSTT

ano
was analysed on a pixel-by-pixel basis to identify the temporal
changes associated with urbanisation.

The standardised spatial LST anomaly (LSTS
ano)was defined

as the deviation from the average LST conditions found within
the respective urban boundary as given in Equation 2

LSTS
ano i[ ] � LST i[ ] − LSTS

mean i[ ]
LSTS

std i[ ] (2)

where, LSTS
mean and LSTS

std represent the spatial mean and
standard deviation of LST of all the pixels within the urban
boundary for each year i. The spatial mean and standard
deviation of LST were estimated from the 3-month (March,
April and May) average LST estimated for each year. The
spatial anomaly was defined based on the assumption that
each city will have a mix of low temperature (e.g., vegetated
surfaces and water bodies) and high temperature (e.g., dry
barren land, paved surfaces) areas and the anomaly will be
negative and positive respectively for these two types of
surfaces. As a surface changes from its natural state to an
impervious state, the anomaly will shift in magnitude and
direction as a response to this change.

The temporal and spatial LST anomalies were then used to
identify changes in urban surface temperature conditions on a
5-year basis starting with the year 1990 (e.g., changes between
1990 and 1995, 1995 and 2000, etc.). The time series of the LST
anomaly was analysed within the given 5-year block on a pixel-
by-pixel basis and if the anomaly was positive (negative) for
80% of the 5-year block then that particular pixel was labelled
as a warm (cool) pixel. If the value fluctuated around zero,
without being positive or negative for 80% of the time, then the
pixel was categorised under the “cannot say” category. The
80% threshold was a strict criterion enforced to identify only
pixels with a definite change over the 5 years and to further
reduce false positives.

Estimation of SUHII
The spatial LST anomaly defined in this study is conceptually
similar to surface urban heat island intensity (SUHII) and to
understand the relationship between them SUHII maps were
generated. For each 5-year block, the annual 3-month LST was
averaged to define a 5-year average LST for March, April and

May (LST5). Using this 5-year average LST, the 5-year SUHII
was defined as in Equation 3.

SUHII � LST5 − LST5v (3)
where LST5v is the mean LST value estimated over urban
vegetation such as parks and other natural vegetation.
Vegetated areas within each city were identified by visible
interpretation and a mean LST of these vegetated surfaces
was considered LST5v. SUHII was defined in this manner to
know the temperature differences between different locations
in the city and the vegetated areas within the city. This
definition avoids the influence of rural areas surrounding the
city and in addition, this definition is closer to the SUHII defined
using the Local Climate Zone (LCZ) concept (Stewart and Oke,
2012; Bechtel et al., 2019; Geletič et al., 2019). The SUHII maps
were developed with colour coding, where green represents
cooler spots followed by yellow and then red shows the hotter
spots in the city.

RESULTS AND DISCUSSIONS

Temporal Anomaly
LSTT

ano estimated each year was first visually analysed to
understand its spatiotemporal variation and relationship with
land cover. Examples of LSTT

ano are presented in Figure 2.
Positive anomalies (LSTT

ano >0) indicate warmer conditions
than the long-term mean, shown in yellow and reddish hues,
and negative anomalies (LSTT

ano < 0) indicate cooler conditions
than the long-term average LST, shown in green and blue hues.
Since the seasonally average LST varies every year, the LSTT

ano
also exhibits temporal variations. In general, it was observed
that when the land cover of the pixel changes from a natural
condition to an impervious or developed state, the temporal
LST anomaly changes its sign from negative to positive. An
example of this is presented in Supplementary Figure S1.

Figures 3, 4 show the thermal condition of a pixel over Navi
Mumbai and Chennai respectively analysed on a 5-year basis.
Both figures show that there has been a significant increase in
the number of warmer pixels over both cities in recent years as
compared to the past. In particular, the most recent 5-year
block of 2015–2020 appears to be the warmest with a large
number of pixels being categorised as warm. The warming
pattern captured by the temporal LST anomalies may also be
due to a positive trend in the LST. In both cities, over surfaces
that changed from a natural state to other states (such as
impervious urban surfaces), the temporal LST anomaly
exhibited a clear change in sign from negative to positive
and remained positive for many years after the change
occurred. This observation aligns with previous studies
highlighting the impact of urbanisation on LST. For instance,
Zhao et al. (2014) demonstrated that urban expansion
significantly increases surface temperatures due to the
replacement of vegetated areas with heat-absorbing
materials. Similarly, Li et al. (2017) found that urban areas
consistently show higher LST than their rural counterparts,
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largely due to increased impervious surfaces and reduced
vegetation. The temporal analysis also indicated that the
period from 2015 to 2020 was the warmest in both cities,
with a significant increase in the number of warmer pixels. This

trend is consistent with global observations of rising urban
temperatures due to climate change and urban sprawl.
According to the Intergovernmental Panel on Climate
Change (IPCC, 2021), urban areas are particularly vulnerable

FIGURE 2 | Examples of temporal LST anomaly observed over (A) Navi Mumbai for the year 2019 and (B) Chennai for the year 2020.

FIGURE 3 | Thermal conditions of pixels identified from the temporal LST anomaly over Navi Mumbai. Red and blue colours indicate warmer
and cooler pixels respectively. Black colour indicates that the pixel cannot be labelled as either warm or cool based on the adopted criteria. Each
sub-plot from (A–F) indicates a 5-year block starting 1990.
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to heat waves and rising surface temperatures, which
exacerbate the UHI effect.

Spatial Anomaly
While the temporal anomalies indicate the change in the LST of
a particular pixel concerning its long-term mean, the spatial
anomalies (LSTS

ano) will indicate the deviation in the LST of a
pixel concerning the LST of vegetated areas within the urban
boundary. Thus, the spatial LST anomaly will indicate how
warm or cool a pixel is about the vegetated areas in the city.
Examples of spatial LST anomalies estimated over Navi
Mumbai in 2019 and over Chennai in 2020 are presented in

Figure 5. From the LSTS
ano maps, it is clearly observed that

water bodies and vegetated surfaces have negative anomalies
while developed and other impervious surfaces have
positive anomalies.

Similarly, with the spatial LST anomalies, we labelled each
pixel as warm, cool and “cannot say” classes using the same
80% threshold criteria in each 5-year window. Over Navi
Mumbai the thermally-classified maps were compared with
the land cover maps (Figure 6) to understand the spatial
patterns. The western and southern borders of Navi Mumbai
are surrounded by water bodies (the Thane and the Panvel
creeks, respectively) and mangroves. Similarly, the eastern

FIGURE 4 | Thermal conditions of pixels identified from the temporal LST anomaly over the ChennaiMetropolitan area. Red and blue colours
indicate warmer and cooler pixels respectively. Black colour indicates that the pixel cannot be labelled as either warm or cool based on the
adopted criteria. Each sub-plot from (A–F) indicates a 5-year block starting 1990.
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border is also dominated by other types of vegetation. The
central region of the city between the western and eastern
borders is dominated by bare and built surfaces. Over the
years, the bare surfaces have been converted into developed
surfaces as shown in Figures 6A–D. Comparing the land cover
maps with the thermally classified maps (Figure 7) it can be
clearly seen that the built surfaces are labelled as warm pixels
and the vegetation covered regions are labelled as cooler
pixels. As expected, the western and southern borders are
lined with cooler pixels due to the relative cooling effect of
water and vegetation. Over the years, the southern parts of the
city have seen a rapid increase in developed spaces. However,
the southern parts exhibit relatively cooler temperatures
compared with the northern parts of the city. The southern
parts of the city are bounded by water and vegetation on three
sides, which may have helped the region remain cooler despite
the increase in built area (Keith and Meerow, 2022). However,
the core urban areas show denser warmer pixels which may be
attributed to the rapid urbanisation in these areas.

To understand the spatial pattern of the spatial LST
anomaly (LSTS

ano), SUHII maps have been developed for both
cities. Figure 8 shows the SUHII observed Navi Mumbai
municipal corporation area and it can be observed that the
city has become progressively warmer with hot spots located
in bare surfaces and core residential areas of the city. Hot
spots were also observed in between the green cover of

Mangroves present in the city, indicating the change in land
cover over the years. Towards the southeastern part of the city,
lies Parsik hill (marked as a red patch in the southeastern part
of the city in Figure 8) which experiences warmer conditions
compared to other vegetated areas in the city due to the sparse
vegetation conditions, construction and quarrying activities
carried out in this region over a long period of time. In Navi
Mumbai, the cooling effect of mangroves and water bodies
along the city boundaries was evident. This observation is
consistent with the findings of Keith and Meerow (2022), who
highlighted the role of coastal vegetation in mitigating urban
heat. The spatial anomaly maps also revealed that core urban
areas with densely developed surfaces showed higher LST
anomalies, corroborating studies that associate high
impervious surface coverage with increased UHI intensity
(Santamouris, 2015).

Figures 9, 10 show the change in spatial LST anomaly and
SUHII, respectively during different time periods over the
Chennai Metropolitan area (CMA). Several areas that have
been classified as warm pixels in Figure 9 can be seen to
have positive SUHII values in Figure 10. For example, the
crescent-shaped green patch in the centre of the area
marked “i” in Figure 10 indicates a water body. Over the
years, there has been a shrinkage in the size of this water
body, causing the area surrounding the water body to become
warmer. Similarly, the airport area, marked as “ii”, also shows

FIGURE 5 | Examples of spatial LST anomaly observed over (A) Navi Mumbai for the year 2019 and (B) Chennai for the year 2020.
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warming conditions. It can be seen that the area has become
warmer with the development of the secondary runway and
taxiways over the years. On the other hand, the areamarked “iii”
appears cooler compared to the other parts of the city. The
location corresponds to the estuary of the Adyar river, which
flows through Chennai. This area is a mix of vegetation, water
bodies and well-developed built-up areas with multiple high-

rise structures. The proximity of the sea with its cool sea
breezes, the channelling of the wind by the tall well
developed buildings and the presence of vegetation in the
surroundings play a major role in lowering the temperature
in this area. The spatial analysis revealed the cooling buffer
zones created by the natural cover, including vegetation and
water bodies, located in close proximity to the developed

FIGURE 6 | Land cover map of Navi Mumbai city created with Landsat data for the years (A) 1990, (B) 2000, (C) 2010 and (D) 2017.

FIGURE 7 | Thermal conditions of pixels identified from the spatial LST anomaly over Navi Mumbai. Each sub-plot from (A–F) indicates a 5-
year block starting from 1990. Colour coding is the same as Figure 4.
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FIGURE 8 | SUHII evolution over Navi Mumbai. (A) 1990–1995, (B) 1995–2000, (C) 2000–2005, (D) 2005–2010, (E) 2010–2015,
(F) 2015–2020.

FIGURE 9 | Thermal conditions of pixels identified from spatial LST anomaly over Chennai Metropolitan Area. Each sub-plot from (A–F)
indicates a 5-year block starting from 1990. Colour coding is the same as Figure 4.

FIGURE 10 | SUHII evolution over Chennai. (A) 1990–1995, (B) 1995–2000, (C) 2000–2005, (D) 2005–2010, (E) 2010–2015,
(F) 2015–2020.
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spaces. The spatial anomaly analysis highlighted that water
bodies and vegetated areas consistently exhibited negative
anomalies, indicating cooler conditions. This finding is
supported by the literature, which emphasises the cooling
effects of vegetation and water bodies in urban
environments. For example, Bowler et al. (2010) noted that
urban green spaces can reduce local temperatures by up to
1.5°C, while Wu et al. (2019) reported that water bodies
contribute to cooling through evapotranspiration. The spatial
anomaly value for vegetation and water ranged from −2.5 to 0,
indicating significant cooling potential, while built spaces
located in proximity to natural cover exhibited a value
ranging from −0.5 to 0.5, highlighting the role of natural
infrastructure in mitigating the UHI effect.

Our results indicate that planned settlements developed on
barren land with vegetation cover and near water bodies with
proper street and building orientation have temporal anomaly
values similar to those of vegetated surfaces, ranging from
0.08 to 1. This finding underscores the importance of site-level
urban design in mitigating the large-scale UHI effect and the
microclimate of the region. Studies by Norton et al. (2015) and
Emmanuel and Krüger (2012) support this finding, highlighting
that strategic urban planning and design, including green
infrastructure and optimal street orientation, can
significantly reduce urban temperatures.

Further Assessment of LST Anomalies
Assessment of LST Anomaly Classification
The pixels labelled as warm and cool on the spatial LST
anomaly maps and temporal LST anomaly maps were
subjected to further assessment by visual examination. High
resolution images available on Google Earth were used to
compare the land cover state of the area with the
classification on the LST anomaly maps. Over surfaces that
changed from a natural state to other states (such as
impervious urban surfaces), the LST anomaly exhibited a
clear change in sign and magnitude from negative to
positive and remained positive for most of the years after
the change occurred. The reverse was also noted, for example,
over Navi Mumbai, the growth of vegetation over barren
surfaces resulted in the areas becoming cooler and hence,
exhibiting negative LST anomalies. A few examples have been
added in the online Supplementary Material to support the
findings (Supplementary Figures S2–S4).

From each anomaly change map (presented in Figures 3, 4,
7, 9), points labelled as warm and cool were randomly selected
and compared with high resolution images available on Google
Earth obtained in the corresponding time period. In the high-
resolution visual images available on Google Earth
corresponding to the 5-year window of the anomaly change
maps, the land cover of the particular location was noted. If the
land cover of the particular location was either barren or built
up for the majority of the time in the 5-year window, then it was
considered a warm pixel. Similarly, if the land cover was a
vegetated area or water body, then the location was labelled as
a cool pixel. Thus, if a pixel was labelled as warm in the
anomaly change maps, it should correspond to barren or

developed to be tagged as correctly classified. Similarly, a
cool pixel was assumed to be correctly classified if it
corresponded to a vegetated surface or water body. With
this interpretation, the accuracy of both spatial and temporal
anomaly change maps, was evaluated and the results are
presented in Table 1. This is an indirect evaluation of the
thermal anomaly change maps as no reference data were
available for making a direct comparison with the LST
anomaly maps, as is usually done for a land cover map.

From Table 1, it can be observed that the anomaly change
maps consistently corresponded to warm or cool pixels for
more than 80% of the pixels tested and for both cities. This
suggests that the anomaly change map can act as an indicator
of surfaces that have become impervious from their natural
state and vice versa. The accuracy assessment method
presented here will erroneously classify all developed
spaces as warmer places. As mentioned, a few developed
areas adjacent to water bodies in both Chennai and Navi
Mumbai have become cooler over time. However, such
places are rather limited and as an overall pattern, barren
surfaces and developed areas exhibited warmer
temperatures compared to vegetated surfaces.

Comparison Between Navi Mumbai and Chennai
Although the aim of this study is to demonstrate the potential
of LST anomalies in identifying changes in the thermal
regime of cities, the analysis of two study areas offered
an opportunity to compare the two cities. Table 2
presents the percentage of pixels (with respect to the total
number of pixels in the city) with a given temporal LST
anomaly value (rounded off to an integer) for Chennai and
Navi Mumbai for the years 1989 1990 and 2020. Observing
the values in Table 2, it can be inferred that both cities have
warmed up significantly compared to the past. LST values
are increasing over both cities with time leading to this
warming trend. In particular, Chennai which had almost
100% of the pixels equal to or less than the long-term LST
mean in 1990 now has more than 43% of the pixels greater
than the long-term LST mean. There is also a considerable
decrease in the number of pixels exhibiting negative
anomalies. Navi Mumbai has also warmed significantly
with a notable increase in the number of pixels with
positive LST anomalies in 2020. However, unlike Chennai,
Navi Mumbai also had LST hot spots in the past indicated by
the presence of approximately 44% of pixels with positive
temporal LST anomalies. In terms of LST, Chennai was
relatively cooler in the past than in the present.

Table 3 presents a similar analysis, but with spatial
anomalies. It should be recalled that the spatial LST
anomaly indicates the relative temperature difference of a
pixel with respect to the mean LST in the city. In the
Table 3, it can be observed that the overall pattern of
spatial LST anomalies over Navi Mumbai remained more or
less similar in 2020 compared to 1989. This is also evident
from the SUHII images for Navi Mumbai shown in Figure 8.
Navi Mumbai had open and hot barren surfaces in 1990 which
were converted to developed areas in the following years
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(Figure 6). This could be the reason for the similar spatial LST
anomaly patterns. Chennai, on the other hand, has become
warmer with a decrease in the number of pixels with negative
LST anomalies and an increase in the number of pixels with

positive spatial anomalies. This can also be observed in the
SUHII maps for Chennai (Figure 10). These results indicate
that the city of Chennai is becoming warmer with time and
many pixels are becoming hot spots.

TABLE 1 | Results of visual evaluation of LST anomaly change maps.

Spatial LST anomaly change - Navi Mumbai

Class from the LST anomaly map
Warm Cool

Visual imagery from Google Earth Barren or developed 43 5
Vegetation or water 0 4

Overall accuracy (%) 90.38
Temporal LST anomaly change - Navi Mumbai

Class from the LST anomaly map
Warm Cool

Visual imagery from Google Earth Barren or developed 22 4
Vegetation or water 0 0

Overall accuracy (%) 84.61
Spatial LST anomaly change - Chennai

Class from the LST anomaly map
Warm Cool

Visual imagery from Google Earth Barren or developed 30 5
Vegetation or water 0 4

Overall accuracy (%) 87.18
Temporal LST anomaly change - Chennai

Class from the LST anomaly map
Warm Cool

Visual imagery from Google Earth Barren or developed 22 2
Vegetation or water 0 4

Overall accuracy (%) 92.86

TABLE 2 | Percentage of pixels with different temporal LST anomaly values in Chennai and Navi Mumbai.

Anomaly value Percentage of pixels

Navi Mumbai 1989 Navi Mumbai 2020 Chennai 1990 Chennai 2020

−4 0.25 0 0.01 0.25
−3 3.09 0 4.00 0
−2 5.23 0 68.9 0.01
−1 12.54 0.2 24.4 3.33
0 33.85 8.96 2.64 52.09
1 36.94 73.34 0.05 43.66
2 7.63 17.48 0 0.9
3 0.42 0.02 0 0
4 0.05 0 0 0

TABLE 3 | Percentage of pixels with different spatial LST anomaly values in Chennai and Navi Mumbai.

Anomaly value Percentage of pixels

Navi Mumbai 1989 Navi Mumbai 2020 Chennai 1990 Chennai 2020

−3 1.46 0.01 1.25 3.9
−2 13.59 12.97 7.2 4.84
−1 10.18 13.38 18.56 14.04
0 39.64 40.65 39.87 39.2
1 31.7 28.35 27.03 33.57
2 3.42 4.19 6.05 4.32
3 0.01 0.44 0.05 0.13
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CONCLUSION

There is a transition from natural land cover (vegetation/
water) to barren and impervious land cover during
urbanisation. From an urban planning perspective, it is
imperative to understand the change in thermal
conditions of a city due to urbanisation and provide
solutions to mitigate the resulting heat effect. This study
utilised thermal anomalies to identify changes in land cover
conditions over urban areas that can be related to urban
growth over the years. This study highlighted the hotspot
areas in an urban settlement indicating the zones where
quick action is required in developing effective strategies to
mitigate the impact of urbanisation on SUHII and improve
the liveability of the cities. The results of this study can also
be utilised to develop area specific policies for a sustainable
habitat. They also open up a space to study how planned
settlements behave thermally over the years. Finally, they
highlight the need to plan cities that are adaptable and
resilient to urban heat due to development pressure.

In this study, the temporal anomaly maps were developed
using data over a period of 32 years (1988–2020). LST values
could have increased naturally over the two cities and this
could have caused a large part of the cities to appear warm
compared to the early 1990s (Figures 3F, 4F). Although the
long-term mean has been used here, a relatively shorter time
period (10 or 15 years) can be used especially for cities that
have recently developed.

The present work was limited to summertime anomalies as
they show clearer results compared to the winter season
anomalies. This study can be further developed by
comparing the results from nighttime LST data to see the
shift in SUHII over day and night. However, high resolution LST
data from Landsat-like satellites are not available at night.
Furthermore, using LST from MODIS at 1 km may not capture
the finer-scale LST variations. Recent and upcoming thermal
sensors such as ECOSTRESS, TRISHNA, LSTM and SBG can
provide relatively finer resolution LST even at night and these
can be utilised for the analysis. In addition, for analysing the

datasets in the past, thermal disaggregation methods
developed in studies such as Sara et al. (2024) can be
utilised to disaggregate MODIS LST to a finer
spatiotemporal scale for LST analysis.
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