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Tailings generated during ore processing may host significant residual contents of
valuable commodities, including critical metals. The particle properties of the tailings,
such as mineralogy, particle size, and the surface liberation of ore minerals, strongly
control processing behaviour. This study explores a novel combination of methods for
incorporating particle data, derived from automated mineralogy, into geometallurgical
models of tailings deposits to better understand their reprocessing potential and the
economic feasibility of re-mining. This was achieved through binning of different
particle types, geostatistical modelling of particle bin frequencies, and bootstrap
resampling to reconstruct particle populations. The spatial distributions of
processing-relevant particle properties throughout the tailings deposit were
predicted with corresponding uncertainties. There are clear systematic trends in the
spatial distributions of different particle types, resulting from the sedimentary-style
deposition of the tailings. For instance, the tailings nearer the dam walls comprise
coarser, silicate-rich particles, while fine-grained and well-liberated sulphide mineral
particles are more abundant in the centre of the tailings deposit. As a result, robust
models could be developed for the spatial distributions of particle size and mineralogy,
which strongly control the sorting of particles during deposition, and other related
properties, such as sulphide mineral grain sizes. Finally, a bulk sulphide flotation
process was simulated and acid mine drainage potential estimated using the
interpolated particle data. Around 58% of the sulphide minerals present could be
recoverable by flotation, with the recoverable sulphide portion decreasing towards the
centre of the TSF due to the fine-grained nature of the sulphide minerals. The acid mine
drainage potential of the tailings is estimated to bemoderate to high, indicating that the
carbonate minerals present are not sufficient to neutralise the high acid-generating
potential of the sulphide minerals. Overall, this study demonstrates how particle-based
geometallurgical models can be developed and utilised for practical applications, with
the aim of improving the accuracy of resource and reserve estimations of tailings
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deposits and the sustainable and responsible management of anthropogenic
resources. The methodology proposed here can be easily transferred to other
tailings deposits.

Keywords: geostatistics, modelling, automated mineralogy, particle data, resource potential, acid mine drainage,
mine waste

INTRODUCTION

The mining and processing of most metalliferous ores
produces a much higher volume of waste than of valuable
product(s) (e.g., Dold, 2020; Lottermoser, 2011). Tailings are
the chief waste product from ore processing and comprise
fine-grained particles, generally in a slurry, from which the bulk
of the ore minerals have been removed by suitable
beneficiation technologies (Wills and Finch, 2015). The
volume of tailings generated worldwide will increase as the
industry shifts towards the mining of deeper, lower-grade ore
deposits and expands to meet the needs of the green energy
transition (Franks et al., 2021; Herrington, 2021; Valenta et al.,
2023). An estimated ~300 Gt of tailings will be produced
between 2020 and 2050, around 2.4 times the amount
produced over the period from 1900 to 2020 (Valenta et al.,
2023). The management, storage and/or re-use of historical,
current, and future mine wastes is thus one of the most
important challenges for society and the global
mining industry.

Tailings repositories often contain residual contents of the
target mineral(s) (Dold, 2020; Rupprecht, 2020; Valenta et al.,
2023). Elements critical for the green energy transition, which
were not previously targeted by minerals processing, may also
be present (e.g., Araya et al., 2021; Mejías et al., 2023). Re-
processing to recover valuable commodities from tailings may
prove to be economically feasible with current or future
technologies, helping to meet raw material demands while
reducing the volumes of waste to be stored (e.g., Vitti and
Arnold, 2022; Whitworth et al., 2022). Re-processing should
also aim to produce a “clean” residue that can be valorised
(e.g., El-bouazzaoui et al., 2022; Kinnunen et al., 2022). Already,
tailings have been used successfully to make cement (Gou
et al., 2019; Martins et al., 2021), geopolymers (Mabroum et al.,
2020; Niu et al., 2022; 2020), ceramics (Drif et al., 2021; Karhu
et al., 2019; Veiga Simão et al., 2021b; 2021a) and “mineral
sands” (Golev et al., 2022).

Ideally, the assessment of the resource potential of tailings
storage facilities (TSF) should include geometallurgical
characterisation and modelling (Büttner et al., 2018).
Geometallurgy integrates available geological, geochemical,
and mineralogical knowledge with factors that influence all
stages of the mining value chain, such as mining/geotechnical
engineering, processing, metallurgy, and geoenvironmental
aspects (Dominy et al., 2018; Frenzel et al., 2023; Hoal and
Frenzel, 2022; Hunt et al., 2019). Important geometallurgical
inputs include primary properties, i.e., those intrinsic to the ore
such as mineralogy, mineral associations, mineral grain sizes,
and secondary properties, i.e., response variables thatmeasure

the processing behaviour of the ore such as flotation recovery,
throughput, and grindability (Coward et al., 2009).

Due to the particulate nature of tailings, the geometallurgy
of tailings deposits is somewhat different to that of most
geogenic (primary) deposits. In tailings, ore minerals are
commonly locked in complex particles (together with
gangue minerals) which would be challenging to recover
with the standard beneficiation technologies used at the
time of their production. As such, properties including
particle size, liberation, and surface area of the valuable
minerals, are of importance. Numerous studies have
performed quantitative mineralogical and textural
characterisation of tailings deposits. For example (Mulenshi
et al., 2019), studied tailings from the Yxsjöberg tailings
deposit to investigate both primary and secondary
properties related to remediation and the recovery of critical
minerals. Guanira et al. (2020) investigated ore mineralogy and
environmental behaviour, namely deportment of penalty
elements and the acid-generating and -neutralising potential
of tailings from a Cu(-Au-Ag) skarn deposit.

Furthermore, TSFs are heterogeneous in nature due to
processes occurring both during and after tailings
deposition. Firstly, the sedimentary-style deposition of slurry
tailings results in the sorting of particles away from spill points
by size and density (e.g., Nikonow et al., 2019; Vick, 1990;
Weightman et al., 2021). Thus, the distribution of different
particle types within a TSF is not uniform, creating trends in
chemical composition (e.g., Blannin et al., 2022b). Secondly,
near-surface weathering and oxidation processesmay alter the
chemistry, mineralogy and textural properties of tailings,
particularly in sulphidic materials (e.g., Dold, 2017; Elghali
et al., 2023; 2019; Simate and Ndlovu, 2014). The formation
of hardpan layers may inhibit the further advance of the
oxidation front, preventing oxidation of the deeper, water-
saturated tailings (e.g., Elghali et al., 2019; Lindsay et al.,
2015; Redwan et al., 2012). Additionally, ore composition,
processing method, and tailings deposition may vary over
time, changing the mineralogy, textural properties and
spatial distributions of particle types within the TSF (e.g.,
Nikonow et al., 2019; Tripodi et al., 2019; Weightman et al.,
2021). These factors must be considered when geospatially
modelling a TSF. In particular, samples from the oxidised zone
cannot be assumed to represent “fresh” tailings andmay make
interpolation to depth difficult.

After the quantitative geometallurgical characterisation of
tailings, the next logical step is the interpolation of relevant
variables across 3D space. Geometallurgical datasets are
typically highly multivariate, containing many samples and
variables with complex inter-dependencies and spatial
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relationships (e.g., Boisvert et al., 2013), while secondary
properties (e.g., grindability, flotation recovery) are sparsely
sampled compared to primary properties, and are often
measured at different scales (e.g., Coward et al., 2009;
Deutsch et al., 2016). Furthermore, some geometallurgical
properties are non-additive, i.e., they cannot be averaged
linearly (Coward et al., 2009), meaning that linear
interpolation methods cannot be used.

These inherent properties of geometallurgical datasets can
complicate modelling efforts. A simple method to produce
geometallurgical models involves interpolating additive
properties (geochemistry), followed by linear or non-linear
regression to predict primary or secondary geometallurgical
variables, including non-additive parameters (Boisvert et al.,
2013; Rincon et al., 2019a; 2019b; Rossi and Deutsch, 2014;
Tungpalan et al., 2021). More sophisticated interpolators, such
as geostatistical methods, particularly conditional simulations
for non-additive properties (Abildin et al., 2019; Adeli et al.,
2021; Deutsch et al., 2016; Louwrens, 2016; Prior et al., 2021),
or machine learning-based methods (Lishchuk et al., 2019;
Mena Silva et al., 2020) can also be applied to integrate
both primary and secondary geometallurgical properties into
spatial models. As yet, simple linear regression and
interpolation models, in addition to geostatistical methods,
have been used to model geometallurgical variables
specifically in tailings deposits (Blannin et al., 2022a; Büttner
et al., 2018; Louwrens, 2016).

Ore properties relevant for geometallurgical studies can be
quantified with Scanning Electron Microscope (SEM)-based
image analysis techniques, also known as automated
mineralogy (e.g., Fandrich et al., 2007; Schulz et al., 2020).
Automated mineralogy provides vital information on primary
geometallurgical properties, e.g., mineral associations and
mineralogy in intact ore, and particle size, shape, and
mineral liberation characteristics in milled materials. In fact,
the advantages of particle data have long been recognised
(e.g., Gaudin, 1939; King et al., 2012) although the tools to
generate such particle data were not available early on. The
large amounts of particle data generated by automated
mineralogy methods can be challenging to work with and
are generally under-utilised, with only bulk properties
calculated. More recently, Kupka et al. (2020), Pereira et al.
(2021b) and Schach et al. (2019) have performed process
modelling, making use of particle data from automated
mineralogy.

Particle-based data are particularly relevant for
understanding the in-situ material properties of tailings,
being particulate materials. Therefore, particle data should
ideally be integrated into geometallurgical models of TSFs
to provide the information relevant to processing and
environmental behaviour. Specifically, geometallurgical
models could focus on particle populations, from which the
relevant variables can be derived. The challenge in this case is
the spatial interpolation of highlymultivariate particle datasets.
To address this need, this study introduces a new method to
construct a geometallurgical model of a tailings deposit
incorporating detailed particle population data.

The case study in question is the Davidschacht TSF in
Freiberg, Germany. To date, the geochemistry of the tailings
has been modelled for a 2D layer (Blannin et al., 2022b) and in
3D (Blannin et al., 2023), focusing on valuable (Cu, Zn, Pb, and
In) and hazardous (As, Cd) components. Furthermore,
mineralogical and textural properties were considered via
linear regression models by Blannin et al. (2022a). The
main objective of the present study is to interpolate
particle populations and accurately reproduce the primary
geometallurgical properties of the tailings. Ultimately, the
resultant particle-based spatial model could be used as
direct input into a particle-based processing model (e.g.,
Pereira et al., 2021b) to simulate the beneficiation
response of the deposit. The particle data can also be
used to infer or model environmental behaviour of tailings.
Therefore, this study represents an important step towards
the integration of geometallurgical models with particle-
based processing simulations for tailings deposits. Such
modelling can improve the accuracy of mineral reserve
estimations by providing robust predictions of mineral
recoveries and can contribute towards the sustainable
management and responsible exploitation of natural and
anthropogenic resources.

MATERIALS AND METHODS

Case Study
The Davidschacht TSF (Figure 1A), originates from the froth
flotation of sphalerite-pyrite-quartz and galena-quartz ±
carbonate veins of the central portion of the historic
Freiberg Mining District (Swinkels et al., 2021). The ores
were processed in the 1940s–60s to recover Zn, Pb, and
minor amounts of Cu and Ag (Fritz and Jahns, 2017) and the
Davidschacht TSF mainly operated between 1951 and 1964
(Fritz and Jahns, 2017; G.E.O.S., 1993). The tailings are
~20–30 m deep, with a surface area of ~63,000 m2 and a
volume of ~760,000 m3 (Fritz and Jahns, 2017). An aerial
photograph of the Davidschacht TSF from 1967, after
tailings deposition ceased, is shown in Figure 1B. Notable
contents of pyrite, arsenopyrite, sphalerite, chalcopyrite and
galena remain in the tailings (Martin et al., 2015; Redwan
et al., 2012), corresponding to grades of around 0.4 wt. % Zn,
0.2 wt. % Pb, 0.05 wt. % Cu, and 9 g/t In (e.g., Blannin et al.,
2023; Fritz and Jahns, 2017; G.E.O.S., 1993; Martin
et al., 2015).

Sampling and Analytical Work
A shallow layer (1–3m) of the Davidschacht TSF was sampled
on a grid of 30 m, nested grids of ~15 m and ~7.5 m, plus
random holes and twin holes, for a total of 68 samples
(Figure 1C). This sample configuration was selected to best
fit the size and shape of the TSF and to assess the horizontal
variability at various scales. Sampling was limited to the
northern zone of the TSF due to the presence of widespread
rubble and soils on the southern section, which prevented
drilling. The first meter of tailings was largely or fully
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oxidised and was therefore removed as not representative of
the tailings deposit as a whole. The analysed material, from
1 to 3 m, was almost entirely fresh tailings.

The geochemistry of all samples was analysed with X-ray
fluorescence spectroscopy (XRF) at the Helmholtz Institute
Freiberg for Resource Technology (HIF). The analyses focused
on the major elements and oxides present in the tailings (SiO2,
Al2O3, K2O, CaO, Fe, and S), as well as the valuable (Cu, Zn, Pb,
and In) and hazardous (As, Cd) elements. For further details on
the sampling, sample preparation and geochemical analyses,
see Blannin et al. (2022b).

Thirty-six samples from across the TSF (Figure 1C) were
analysed with the Mineral Liberation Analyzer (MLA), an
automated mineralogy system (Fandrich et al., 2007), to
obtain mineralogical and textural data for individual
particles. The sample preparation and MLA measurements
were carried out at HIF. For information on the sample
preparation, SEM and MLA operating conditions, and data
processing, see the Supplementary Material.

A total of 11 minerals/mineral groups were defined, as
detailed in Supplementary Table S2. Gangue minerals
mainly comprise silicate and sheet silicate minerals,
carbonate minerals and Fe-oxides. The sulphide minerals,
being the main focus of the study, were investigated
individually, rather than being grouped, and include pyrite,
sphalerite, chalcopyrite, galena, and arsenopyrite. The data
quality of the MLA measurements is also of importance,
and these results are provided in provided in the
Supplementary Material. To summarise, the complex and
fine-grained nature of the tailings and presence of
secondary phases poses difficulties for automated

mineralogy analyses of such materials. These factors have
resulted in some systematic under-estimation of the metals of
interest. However, the results obtained here are generally good
and the best that could be achieved with current practices and
therefore this work serves as a valuable case study for particle-
based geostatistical modelling.

Electron Probe Micro-Analysis (EPMA) point measurements
were performed on pyrite (n = 482), sphalerite (n = 138),
chalcopyrite (n = 9), arsenopyrite (n = 9) and galena (n = 6)
grains from 10 selected samples to quantify their chemical
composition, including trace elements. The measurements
were performed at Faculdade de Ciências, Instituto Dom
Luiz, Universidade de Lisboa. The EPMA method is detailed
in the Supplementary Material. The mineral chemistries
calculated from the EPMA results were subsequently used
in the MLA mineral list.

Overview of the Modelling Workflow
This section provides a brief overview of the combination of
methods developed for the spatial interpolation of particle
populations, which is schematically illustrated in Figure 2.
Three sets of data are used: geochemical data, the
greyscale values of a historical aerial photo corresponding
to the modelled layer of the tailings deposit (Figure 1B), and
particle data obtained using MLA.

Firstly, geostatistical modelling was used to interpolate the
contents of selected elements and oxides across the sampled
layer of the tailings deposit. Universal sequential Gaussian
simulation was selected as the best method to account for the
spatial dependencies of this data (cf. Blannin et al., 2022b). A
Minimum/Maximum Autocorrelation Factor transformation

FIGURE 1 | (A) Amap indicating the location of the Davidschacht TSF in Freiberg. (B) An aerial photograph of the Davidschacht TSF taken in
1967, with the location of a known spill point indicated by the red arrow, and the extent of the tailings andmodelled regions outlined. (C) Amap of
the tailings deposit with the sampled locations and the extent of the tailings andmodelled regions outlined. Samples with only geochemical data
are marked with an orange circle and samples with geochemistry and MLA data are in purple. Modified after Blannin et al. (2022a).
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was applied to the geochemical data. Trends in the
transformed data were fitted based on the X and Y
coordinates and the greyscale from the historical photo,
after several steps of image processing and data
transformation. The geostatistical model was optimised by
selecting the optimum trend-variogram model. Universal
sequential Gaussian simulation was performed to produce
250 equi-probable realisations of the selected elements/
oxides, using the historical image as the underlying
exhaustive dataset (cf. Blannin et al., 2022b).

Next, the MLA particle data was binned based on certain
primary particle properties: mineralogy and particle size. It was
assumed that the same particle types are present across the
whole sampled layer of the tailings deposit and that only their
relative frequencies of occurrence vary spatially. The
frequency of the individual particle bins in each sample was
treated as compositional data and transformed using a
centred log-ratio (clr) transformation. Again, universal
sequential Gaussian simulation was chosen to interpolate

the particle bin frequencies. The geochemical results (per
sample) and historical image were used to fit the trends in
the transformed data. After the optimum trend-variogram
models were selected, universal sequential Gaussian
simulation was applied to the particle bin frequencies, using
the historical aerial photo and the simulated realisations of the
bulk chemistry as exhaustive data. Finally, the particle
populations for each grid point were constituted by
bootstrap resampling of individual particles from the particle
bins at the interpolated ratios. Selected geometallurgical
properties were then calculated from the simulated particle
populations.

The individual steps of the workflow are detailed further in
the following sections. Overall, this integrated approach deals
with the highly multivariate nature of the particle data and
accounts for both the inter-dependencies and spatial
dependencies in the data. Additionally, the non-additivity of
many geometallurgical properties was accounted for by
converting the particle data to additive particle bin

FIGURE 2 | Schematic workflow of the modelling methods combined to interpolate the particle populations across the tailings deposit. n,
number of samples; v, number of variables; s, number of simulations; N, number of particles sampled during bootstrap resampling; MAF,
Minimum/Maximum Autocorrelation Factors; clr, centred log-ratio.
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frequencies and expressing these as functions of other
additive properties (geochemistry and the greyscale of the
historical image) (e.g., Adeli et al., 2021; Boisvert et al.,
2013; Rossi and Deutsch, 2014). Applying conditional
geostatistical simulations, such as sequential Gaussian
simulation, also helps to address the non-additivity problem
(Deutsch et al., 2016).

Binning of Particle Data
The MLA measurements generated a large amount of particle
data, with a total of ~7, 480,000 particles characterised across
the 36 samples. The particle datasets were imported into R
Studio (R Core Team, 2021) and combined into one particle
dataset for data processing, using the “gmMLA” package
developed at the HIF, as described by Kupka et al. (2020)
and Pereira et al. (2021b, 2021a). The particle data available
included mineralogical and textural properties of all individual
particles, and the mineral grains constituting the particles. The
relevant particle properties for this study are mineral contents,
particle size, and grain size and surface liberation of the
sulphide minerals. Several measures are available for
particle size. The equivalent circle diameter (ECD) was
selected for this study, as a simple, commonly used and

well-understood single parameter to enable the
understanding of particle sizes.

To define particle types, statistical clustering methods were
first tested, including k-means, hierarchical clustering (e.g.,
Jain et al., 1999) and Gaussian mixture modelling (e.g.,
Sarkar et al., 2020; Scrucca et al., 2016). Clustering methods
are unsupervised machine learning techniques which aim to
group data in a way that maximises variability between
clusters and minimises it within clusters (e.g., Jain et al.,
1999; Xu and Wunsch, 2008). Ultimately, statistical
clustering was unsuccessful. The particle data contains a
high quantity of zeros (e.g., a particle comprised of only
silicate minerals will have zeros in all mineral-content,
surface-liberation, and grain-size cells related to other
minerals), which is problematic for calculating the Euclidean
distance matrices used in k-means and hierarchical clustering
(e.g., Jain et al., 1999). Furthermore, Gaussian mixture
modelling requires a multivariate normal distribution (e.g.,
Sarkar et al., 2020; Scrucca et al., 2016), which is not
usually present for particle data.

A manual binning method was implemented to classify
particles first according to mineralogy and second by
particle size, with a total of 61 particle bins defined

FIGURE 3 | Summary of the particle bins based onmineralogy and particle size. The number in the black circle/ovals denotes the particle bin
number while the number shown in italics below denotes the number of particles in the particle bin. The total number of particles in the right-hand
column refers to the number of particles per mineral group. The number of particles per bin may vary slightly for bins covering the same
percentile range due to the effects of discretisation of the particle sizes.
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(Figure 3). Fully liberated particles of “silicate minerals,” “sheet
silicate minerals,” “sulphide minerals” and “carbonate
minerals” and “all remaining fully liberated particles” were
assigned to separate groups. Three groups of mixed
particles were defined: “mixed particles of silicate and sheet
silicate minerals,” “mixed particles containing sulphide
minerals,” and “all remaining mixed particles.” A set of
percentiles of the log-transformed particle size, by number
fraction, were used as upper and lower limits for the bins:
<1%, 1%–5%, 5%–10%, 10%–25%, 25%–50%, 50%–75%, 75%–
90%, 90%–95%, 95%–99%, >99%. Smaller bins were required at
the extremes of the particle size distribution to reduce the
smoothing effect of binning. Particle bins containing fewer
than 10,000 particles (less than 0.1% of the complete particle
dataset) were combined to decrease the workload for
subsequent modelling stages.

Particle bin frequencies of all 61 bins were calculated for
each of the 36 samples according to Equation 1:

ab � Pb

PT
(1)

where ab is the particle bin frequency of particle bin b, Pb is the
number of particles in particle bin b and PT is the total number
of particles in the sample. The summary statistics of the
particle bin frequencies, converted to percentages for ease
of understanding, can be found in Supplementary Table S4.
Spatial maps detailing the particle bin percentages of each of
the 36 samples are plotted in Supplementary Figure S1. In
general, fine particles are concentrated in the centre of the
tailings dam, while coarse particles become more abundant
towards the dam walls to the north and east. This trend is
clearest for the “silicate minerals” and “sheet silicate minerals”
group bins, which have the highest frequencies, with medians
of mostly 1%–10%. The median “sulphide minerals” group bin
frequencies vary from 0.1% to 3.0%, comparitively higher than
the “mixed particles containing sulphides” bins, with medians
of 0.2%–0.5%.

Geostatistical Modelling of Chemistry and
Particle Bin Frequencies
Geostatistical modelling was performed to interpolate both the
chemistry and particle bin frequencies across the sampled
area of the Davidschacht TSF (Figure 2). The modelling was
carried out in the R software (R Core Team, 2021), utilising
relevant packages: “gstat” (Gräler et al., 2016; Pebesma, 2004),
“compositions” (van den Boogaart et al., 2021) and
“gmGeostat” (Tolosana-Delgado and Mueller, 2021a).
Universal-kriging based sequential Gaussian simulation
(USGSim) was performed to provide multiple equi-probable
realisations of the chemistry and model the spatial uncertainty
(Li et al., 2015; Deutsch and Journel, 1998; Matheron, 1969).
This method involves modelling the local trend within a
neighbourhood and therefore accounts for the spatial trends
in the tailings composition which result from the sedimentary-
style deposition of tailings. A similar approach was applied for
the modelling of the chemistry and the particle bin frequencies,

modified after and described in detail in Blannin et al.
(2023, 2022b).

Prior to modelling, data transformations were necessary
due to the spatial and compositional nature of the data. The
chemistry variables included the grades of SiO2, Al2O3, K2O,
CaO, MgO, Fe, S, Cu, Zn, Pb, As, Cd, and In, as well as an “other”
variable required to close the data (Tolosana-Delgado et al.,
2019). The Minimum/Maximum Autocorrelation Factor (MAF)
transformation was applied to de-noise and de-correlate the
geochemical data (Figure 2) (Switzer and Green, 1984;
Tolosana-Delgado and Mueller, 2021b). The MAF
transformation, and geostatistical analysis of MAF variables,
has previously been implemented for tailings deposits (e.g.,
Abildin et al., 2019; Blannin et al., 2023; Karacan et al., 2023).
The particle bin frequencies underwent a centred log-ratio (clr)
transformation (Figure 2).

Sets of trendmodels were tested for both the MAF variables
and clr variables. For the MAF variables, the trends were based
on the X and Y coordinates and the grayscale values (gst) of the
aerial photograph of the TSF, after image processing and a
logit transformation (Figure 1B; see Blannin et al. (2022b) for
further details). The trends in the clr variables were fitted with
the MAF variables and the gst values (Figure 2). When
including all possible combinations of the 13 MAF variables
and gst values as potential explanatory variables, a very large
number of trend function sets would be produced. Therefore,
the set of trends was limited to combinations of up to 6 of the
MAF variables plus gst, which totalled 4,088 possible trend sets
when including a no-trend (null) hypothesis. After the selected
trends were fitted to the MAF and clr variables, the trend
residuals were transformed to a normal distribution using
the ordered quantile normal score transformation (Peterson,
2021; Peterson and Cavanaugh, 2020). Empirical variograms
were computed for the transformed values, with a maximum
distance of 60 m and a lag distance of 5 m. Exponential and
Gaussian variogram models, both with and without nugget,
were tested. The optimum combination of trend and variogram
model for each MAF and clr variable were selected as those
with the lowest Akaike information criterion (AIC) value
(Sakamoto et al., 1986), seeking a trade-off between a
minimum number of model parameters and maximum
goodness-of-fit.

USGSim (Li et al., 2015; Matheron, 1969) was implemented
with the optimum trend-variogram model and local
neighbourhood, to produce 250 realisations of each MAF
variable describing the tailings chemistry (Figure 2). The
modelling was performed on a grid of ~1 m, within the
outline of the sampled tailings area (Blannin et al., 2022b),
and the gst values of the historical image at each grid point
were used as exhaustive data. USGSim of the particle bin
frequency clr variables was performed on the same grid,
using the optimised trend-variogram model and local
neighbourhood parameters (Figure 2). A total of
250 simulations of the clr variables were generated. For
each realisation of the clr variables produced, a different
realisation of the MAF variables was used as exhaustive
data, in addition to the gst values from the historical image.
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Finally, the individual realisations of the clr variables for each
grid point were back-transformed to produce 250 realisations
of the 61 particle bin frequencies.

Leave-one-out cross-validation (e.g., Goovaerts, 1997) was
used to validate the kriging models and to select the local
neighbourhood used for running the simulations. Several
arguments from the “gstat” package in R (Gräler et al., 2016;
Pebesma, 2004; R Core Team, 2021) were used to define the
local neighbourhood, which are defined as follows:

• “maxdist” maximum distance for samples to be taken
within the neighbourhood.

• “nmin” number of samples within “maxdist” below which
no interpolation is attempted.

• “nmax” maximum number of data points to
interpolate with.

• “omax” number of data points to be used from each of the
four quadrants around the interpolated location.

Using the leave-one-out cross-validation results, the Mean
Error (ME), standardised Root Mean Squared Prediction Error
(RSR), R2 value between observed and predicted values (Obs-
Pred R2) and R2 value between predicted and residual values
(Pred-Res R2) were calculated to evaluate the model
performance. The RSR is calculated by dividing the Root
Mean Squared Prediction Error by the standard deviation of
the observed variable.

Reconstructing the Particle Populations
Using Bootstrap Resampling
Bootstrap resampling was used to populate the 250 simulations
with particles (Figure 2). This method involves generating M
subsets by randomly selecting N samples from the original
dataset with replacement (Chernick, 1999; Efron, 1979). In this
study, particle datasets were generated for each grid point of the
250 simulations by bootstrap resampling from the particle bins at
the numerical ratios corresponding to the simulated bin
frequencies. To achieve this, the number of particles (N) to be
selected for each particle bin was determined by multiplying the
particle bin frequencies with the total number of particles
required. A total of 200,000 particles was selected as the
optimum number per grid point, being similar to the number of
particles in the original samples. Overall, each of the
250 simulations then comprised a total of ~3 billion particles.

Selected primary geometallurgical parameters were
calculated to summarise the properties of the simulated
particle populations: (1) modal mineralogy; (2) particle size
distribution, defined by the p50, p90 and log standard deviation
of ECD; (3) surface liberation of sulphide minerals, defined by
the frequency of the <20%, 20%–40%, 40%–60% and >60%
liberation bins; and (4) mineral grain size distribution, defined
by the p50, p90 and log standard deviation of the ECD of
sulphidemineral grains. The particle and grain size parameters
were calculated by numeric frequency rather than by mass, to
maintain consistency with the particle binning method.

Validation of the Entire Modelling Workflow
Throughout the individual steps of the workflow (Figure 2),
errors are propagated and accumulated. Therefore, it was
necessary to evaluate the performance of the entire particle-
based modelling workflow. To achieve this, particle properties
of the original “observed” sample particle datasets and
simulated “predicted” particle datasets were compared.
These two datasets are described in the following:

• “Observed” Bootstrap resampling was performed using
the original particle datasets for the 36 samples, to obtain
simulations of the “observed” particle population. A total
of 200,000 particles (N) were sampled 250 times (M) with
replacement, i.e., the same parameters as used to
reconstruct the particle populations in the model
(described in Reconstructing the Particle Populations
Using Bootstrap Resampling). Multiple bootstrap
sampling simulations were produced to assess
uncertainties on the particle population properties for
each of the 36 samples.

• “Predicted” To obtain the particle populations representative
of themodelling process it was necessary to account for the
binning of the particles, the geostatistical modelling of the
particle bin frequencies and the bootstrap resampling
stages. To do so, the particle bin frequencies generated
by the leave-one-out cross-validation of the geostatistical
modelling (described in Geostatistical Modelling of
Chemistry and Particle Bin Frequencies) were used for
bootstrap resampling from the particle bins. The same
bootstrap resampling parameters were used as for the
“observed” datasets: a total of 200,000 particles were
sampled 250 times (M) with replacement for each of the
36 predictions. The number of particles (N) to be selected
for each particle bin was determined by multiplying the
particle bin frequencies predicted by leave-one-out cross-
validation with the total number of particles
required (200,000).

The mineralogical and textural properties of interest,
mineralogy, particle size, sulphide mineral surface liberation
and grain size parameters, were calculated for the “observed”
and “predicted” particle populations for each of the 250
simulations of the 36 individual samples. The median values
of all properties for each sample were then compared to
evaluate how accurately the particle properties were
replicated. The measures used included: mean absolute
percentage error (MAPE), relative standard deviation (RSD),
observed-predicted R2 (Obs-Pred R2).

Testing Potential Applications of
Particle Models
The aim of building particle-based geometallurgical models
should first be to establish an accurate model of primary
geometallurgical properties, such as mineralogy and particle
size. Once the model is validated in this way, the modelling can
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be extended for the assessment of secondary properties. To
this end, two applications were tested using the simulated
particle data: a bulk sulphide flotation process and an
estimation of acid mine drainage potential. The methods
used for these two applications are summarised in the
following sub-sections.

Process Modelling
Research by Pereira et al. (2021b) has demonstrated that mineral
processing operations can be simulated using particle data,
clearly showing the potential applications of particle data
within this field. According to the method of Pereira et al.
(2021b), processing test work should be performed.
Automated mineralogy measurements of the feed, concentrate
and tailings from test work allow probabilities of recovery to be
estimated according to the particle properties of each stream.
Although this would have been an ideal approach for this study,
processing test work was outside of the scope of this study.

Instead, a simple bulk sulphide flotation process was
simulated to investigate the recoverability of the sulphide
minerals, pyrite, sphalerite, chalcopyrite, galena, and
arsenopyrite. Theoretical probabilities of recovery were
defined for individual sulphide-bearing particles based on
the particle properties that most strongly control their
recovery during flotation: particle size and surface liberation.
The degree of liberation corresponds to the surface area of the
mineral available to attach to a bubble during flotation and as
such, the probability of recovery increases with liberation. The
probability of recovery depending on liberation, P(RecLib), was
set a priori as a function of liberation (Figure 4), following the
work of Büttner et al. (2018), assuming that the particle will
always be recovered when liberation is >60% (“fully liberated”).
In terms of particle size, fine particles are less likely to collide
with and remain attached to bubbles in the turbulent conditions
typically present within flotation cells, whereas coarse particles
are too heavy and easily detach from bubbles (e.g., Trahar,

1981). The probability of recovery according to particle size,
P(RecECD), was set as a known function (Figure 4) modified
after Büttner et al. (2018) and Trahar (1981). Particles with an
ECD of 10–100 µmwere considered fully recoverable, particles
with ECDs from 1 to 10 μm and 100–200 µm partially
recoverable, and particles <1 µm or >200 µm unrecoverable.

The overall probability of recovery, P(Rec), is the product of
the two probabilities, as demonstrated in Equation 2.

P Rec( ) � P RecLib ∩ RecECD( ) � P RecLib( ) · P RecECD( ) (2)
The probability of recovery for each sulphide-bearing

particle was used to randomly generate a yes/no decision
as to whether the given particle would be recovered. This
was repeated for each sulphide-bearing particle in each of
the 250 simulations of particle data. The “recoverable”
sulphide mineral contents were calculated for each
simulation from the particles with a “yes” decision for
recovery. “Recoverable” is here defined as having a
reasonable probability to be recovered during froth flotation,
based on particle size and surface liberation properties.

Estimation of Acid Mine Drainage Potential
The information provided from particle data can also be used
to investigate environmental behaviour of the tailings. Acid
mine drainage (AMD) reactions occur when the sulphides are
oxidised, releasing acid, and mobilising toxic elements (e.g.,
Dold, 2014; Elghali et al., 2023; Simate and Ndlovu, 2014). The
computed acid rock drainage (CARD) method developed by
Parbhakar-Fox et al. (2016) allows the CARD risk ratio to be
calculated to estimate potential for AMD. Firstly, a CARD value
is calculated for each sulphide and carbonate mineral present,
as shown in Equations 3, 4:

CARDvaluesul �Asul × CARDrelativereactivitysul × CARDAPsul

(3)

FIGURE 4 |Models for the recovery probability of sulphide-containing particles based on sulphide liberation (P(RecLib); left) and particle size
(P(RecECD); right).
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CARD valuecarb � Acarb × CARD relative reactivitycarb × CARDNPcarb

(4)
where A is the area of the mineral from the automated
mineralogy measurements. The CARD relative reactivity
represents the rate at which the mineral will react, based on
paste pH values (Noble et al., 2015) and normalised according
to Parbhakar-Fox et al. (2016). The CARD acid producing (AP)
or neutralising (NP) values were obtained from the mineral
stoichiometry or experimental data (Jambor et al., 2007;
Lawrence and Wang, 1996; Parbhakar-Fox et al., 2016). For
further details on these calculations, and the CARD relative
reactivity, AP and NP values for the relevant minerals, readers
are referred to the Supplementary Material. The CARD risk
ratio was subsequently calculated as ratio of the sum of the
CARD values of the carbonate and sulphide minerals
(Equation 5).

CARD risk ratio � ∑Carbonates
∑Sulphides (5)

Using this approach, the AMD potential was estimated from
the particle data at all grid points for each of the
250 simulations to assess spatial variability. The “total”
CARD value for the entire TSF was also calculated by first
summing the areas of the sulphide and carbonate minerals
from all grid points before completing the calculations. This
was necessary because the CARD risk ratio cannot be
expected to be additive and therefore cannot be
averaged linearly.

RESULTS

The following subsections summarise the results from the MLA
measurements and the geostatistical modelling of chemistry and
particle bin frequencies. Following this, the validation results of
the particle-based modelling workflow are provided, and the
spatial variations of the mineralogy and textural properties of
the tailings from the particle-basedmodels are presented. Finally,
the results from the bulk flotation simulations and AMD potential
estimation are reported.

Mineralogy and Textural Properties of
Tailings Samples
Being the basis of the particle modelling, the MLA results will first
be presented. The quality of the MLA data and the EPMA
measurement results for the sulphide minerals are presented in
the Supplementary Material. The mineralogy and textural
properties of the original tailings samples were investigated
using the “observed” simulations obtained from bootstrap
resampling of the MLA particle data for the individual samples,
as detailed in Validation of the Entire Modelling Workflow. The
summary statistics per sample of all relevant particle properties
are provided in Supplementary Table S8.

The mineralogy and particle size distributions of selected
samples, taken to represent different portions of the tailings

dam, are plotted in Figure 5, alongside the results from the
dataset of all particles for comparison. The mineralogy
(Figure 5A) of the selected samples is dominated by silicate
minerals (range: 34.3–66.3 wt. %, median: 46.0 wt. %) and
sheet silicate minerals (range: 25.1–49.3 wt. %, median:
37.6 wt. %). The carbonate minerals are present at median
contents of up to 1.0 wt. % each, while the “Fe-oxide and Fe-
carbonate minerals” group is present at contents of around
2.4 wt. %. Pyrite has a significantly higher content (~4.0 wt. %)
than arsenopyrite (~0.59 wt. %), sphalerite (~0.32 wt. %),
chalcopyrite, and galena (~0.04–0.05 wt. %) (Figure 5B).

The p50 of the particle size distributions of the samples
varies from ~4.4 to 6.8 µm, with a median value of ~5.0 µm,
showing that there is a large abundance of clay to fine silt
grade particles in the tailings. The p90s of the particle size
distributions varymore significantly, from~9.7 to 39.9 µm, with
a median value of 12.8 µm, corresponding to fine to coarse silt
grade (Supplementary Table S8). The particle size
distributions peak at similar particle sizes (Figure 5C), but
the frequencies differ and form smooth, positively skewed
distributions. To some extent, the degree of skewing might
be an artefact of the MLA measurements, which had a
resolution of 1.5 µm in this case. The particle size
distributions per mineral group, from the combined dataset
of all particles, are also shown in Figure 6. The liberated
mineral groups have peaks at around 3–7 μm, while the
mixed particle groups have coarser particle sizes and
broader distributions. The “fully liberated sulphide particles”
group has the finest particle sizes, while the “mixed particles
containing sulphide” group has the highest frequencies of
coarser particle sizes (Figure 6).

The grain size distributions of the sulphide minerals from
the combined dataset of all particles are plotted in Figure 7,
demonstrating that the sulphide minerals are fine-grained. The
p50 and p90 values for the sulphide minerals are provided in
Supplementary Table S8 and do not vary greatly between the
samples. Pyrite has the coarsest size distribution of the
sulphides, with a broad peak at around 2–7 µm and a wider
distribution. Sphalerite, chalcopyrite, galena, and arsenopyrite
have finer distributions, with a higher abundance of fine grains
of ~2 µm and a smaller peak at ~5 µm (Figure 7).

The surface liberation of the sulphide minerals in each
sample was investigated using the particle frequencies of
four surface liberation classes: <20%, 20%–40%, 40%–60%,
and >60% liberated (Supplementary Table S8). The sulphide
mineral grains are well liberated, particularly those of pyrite,
with 85%–97% in the >60% surface liberation class.
Arsenopyrite and sphalerite show similar degrees of surface
liberation (around 66%–98% of all particles have >60% surface
liberation), while chalcopyrite and galena exhibit more variable
degrees of surface liberation (around 30%–95% of all particles
at >60% surface liberation). The complexity of the distributions
of the degree of surface liberation of the sulphide minerals is
confirmed by the histograms in Figure 8, showing the degree of
surface liberation of all sulphide grains from the combined
particle dataset of all samples. There is a large peak at 100%
surface liberation for all sulphide minerals and a smaller peak
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at 0% surface liberation, which is largest for chalcopyrite
and galena.

Geostatistical Modelling Results
The geostatistical modelling results for the chemistry are
similar to those of Blannin et al. (2022b). For brevity, these
results are presented in the Supplementary Material. The
geostatistical modelling results for the particle bin
frequencies are summarised herein, and further detailed in
the Supplementary Material. The selected trends for each clr
variable are shown in Supplementary Table S12, where a

variety of the MAF coefficients are seen to be selected for
individual clr variables, plus gst. The variogrammodel and local
neighbourhood parameters are provided in Supplementary
Table S13.

The leave-one-out cross-validation results for the
geostatistical modelling of particle bin frequencies are
presented in Supplementary Table S14. Around half of the
Obs-Pred R2 values for the particle bin frequency predictions
are >60% and a third are >70%. Bar graphs of the Obs-Pred R2

values for the particle bins are provided in Figure 9 to illustrate
the variability in the predictions. The particle bin frequencies

FIGURE 6 | Kernel density plots of the particle size (ECD) of each mineral grouping for particle binning. The vertical dashed line corresponds
to the resolution of the MLA measurements at 1.5 µm.

FIGURE 5 | (A) Bar charts of modal mineralogy and (B) sulphide mineral contents (C) kernel density plots of observed particle size
distributions (C) for selected samples from across the tailings deposit, illustrating the differences in mineralogy and particle sizes for different
samples. The combined dataset of all particles is also plotted. The vertical dashed line in (C) corresponds to the resolution of the MLA
measurements at 1.5 µm.
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that are best estimated correspond to: (1) all or most of the
fully liberated “silicate minerals,” “sheet silicate minerals” and
“sulphide minerals” bins; (2) the finer- and coarser-grained
“mixed particles containing sulphide minerals” bins; (3) the
coarser-grained “carbonate minerals,” “mixed particles of
silicate and sheet silicate minerals,” “all remaining fully
liberated particles” and “all remaining mixed particles” bins.

The mixed particle group bin frequencies were generally
poorly predicted (Figure 9). The Obs-Pred R2 values typically
range from 1% to 40% for these bins, showing little to no
correlation between the observed and predicted values. The
mineralogical compositions of the mixed particle groups are
more variable and therefore correlate less strongly with the
chemistry, leading to poorer prediction of these particle bins.
The fine-to medium-grained “carbonate minerals” bins were
also poorly predicted with Obs-Pred R2 values of 15%–26%
(Supplementary Table S14). The Pred-Res R2 values are also
variable, ranging from 0 up to 39%. However, the Pred-Res R2

values are predominantly less than 20%, and well over half
(60%) are lower than 10%, demonstrating that the predictions
are mostly unbiased. This is corroborated by the ME and RSR
values, which are all close to zero (Supplementary Table S14).

Validation of Particle-Based
Modelling Workflow
To validate the entire particle-based modelling workflow, particle
properties from the “observed” and “predicted” particle datasets
(see Validation of The Entire Modelling Workflow for details), were
compared to evaluate how well they were reproduced by the
model. The results for the modal mineralogy and particle size
properties of the samples are provided inTable 1while the results
for the remaining properties canbe found inSupplementary Table

FIGURE 7 | Kernel density plots of the grain sizes (ECD) of pyrite, sphalerite, chalcopyrite, galena and arsenopyrite in the composite of all
samples. The vertical dashed line corresponds to the resolution of the MLA measurements at 1.5 µm.

FIGURE 8 | Histograms of the degree of surface liberation of
the sulphide mineral grains (A) pyrite, (B) sphalerite, (C)
chalcopyrite, (D) galena, and (E) arsenopyrite, obtained from the
particle data from all samples.
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S15. Additionally, scatter plots of the “observed” and “predicted”
particle properties per sample, with uncertainties, are displayed in
(Figure 10; Supplementary Figure S3). Overall, the results show
that most of the material properties could be predicted with high
accuracy, which is an excellent result given the complexity of the
interpolation of particle populations.

The contents of the major mineral groups are very well
predicted, with Obs-Pred R2 values for the silicate minerals and
sheet silicate minerals of 90% and 80%, respectively, and low
MAPE and RSD values, indicating high accuracy (Table 1). As

seen in Figure 10, the small values are somewhat under-
estimated and the large values over-estimated, which is a
typical effect of interpolation. The sulphide minerals are also
well predicted: pyrite has the highestObs-PredR2 of 90%, followed
by 60%–76% for galena, arsenopyrite, sphalerite and chalcopyrite.
The carbonate minerals, “other sulphide minerals” and “Fe-oxide
and Fe-carbonate group” contents are not as well predicted, with
Obs-Pred R2 values of 1%–30%. In fact, the carbonate mineral
estimates essentially consist of noise around the average.

The predictions of the particle size distribution measures,
p50, p90 and standard deviation, are excellent, with Obs-Pred
R2 values of 81%–93% and lowMAPE and RSD values, between
4% and 12%. However, the coarser particle sizes are somewhat
under-estimated (Figure 10). For the sulphide mineral grain
size parameters, the best results were achieved for pyrite (Obs-
Pred R2 64%–84%), arsenopyrite (Obs-Pred R2 55%–80%), as
well as log (p90) of sphalerite, standard deviations of
sphalerite and chalcopyrite grain size (Obs-Pred R2 69%–
81%). The remaining sulphide mineral grain parameters
were less well predicted, with Obs-Pred R2 values of 20%–
51% (Supplementary Table S15) and large confidence
intervals (Supplementary Figure S3). Despite this, the MAPE
and RSD values are low for all sulphide mineral grain-size
parameters, from 2% to 10%.

On average, the predictions of the surface liberation class
abundances are correct, with the regression lines coinciding with
the 1:1 line within error for all classes (Supplementary Figure S3).
In contrast, the Obs-Pred R2 values are low for most of the
sulphide mineral liberation classes, with around half being less
than 50% (Supplementary Table S15). It is clear from Figure 8
that the bulk of the sulphide mineral grains are in the >60%
surface liberation class and the best predictions were achieved
for >60% surface liberation classes of sphalerite, chalcopyrite,
galena and arsenopyrite, with Obs-Pred R2 values of 58%–72%,
demonstrating that the results are reasonably good overall.
However, the surface liberation class abundances for pyrite are
poorly predicted, with Obs-Pred R2 values of 11%–21% and large
amounts of scatter observed in the predictions.

Spatial Variability of Mineralogy and Textural
Properties of the Tailings
The spatial distribution of the mineralogical and textural
properties within the tailings deposit are significant for

FIGURE 9 | Bar plots of Obs-Pred R2 values for individual
particle bins from the leave-one-out cross-validation of the
geostatistical modelling.

TABLE 1 | Validation results for selected particle properties, including mineral contents and particle size distribution measures from the particle-based geostatistical
modelling. SD, standard deviation.

Property MAPE RSD Obs-Pred R2 Property MAPE RSD Obs-Pred R2

Silicates (wt. %) 0.09 0.12 0.90 Chalcopyrite (wt. %) 0.23 0.35 0.76
Sheet silicates (wt. %) 0.08 0.10 0.80 Galena (wt. %) 0.27 0.34 0.60
Calcite (wt. %) 0.54 0.13 0.19 Arsenopyrite (wt. %) 0.22 0.32 0.71
Dolomite (wt. %) 0.22 0.14 0.01 Other sulphides (wt. %) 0.62 0.37 0.23
Ankerite (wt. %) 0.26 0.13 0.01 Other minerals (wt. %) 0.21 0.14 0.54
Fe oxide/Fe carbonate (wt. %) 0.14 0.14 0.30 log (p50 ECD) 0.03 0.04 0.81
Pyrite (wt. %) 0.20 0.33 0.90 log (p90 ECD) 0.04 0.09 0.91
Sphalerite (wt. %) 0.27 0.33 0.73 SD log (ECD) 0.05 0.13 0.93
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understanding which zones may have greater resource
potential or pose an environmental threat. As an example,
maps of the p50, p90, and standard deviation of the particle
size were plotted to investigate their predicted spatial
variability, including 3 simulation examples and an average
of the 250 simulations (Figure 11). It is apparent that particle
size decreases and becomes less variable away from the dam
walls and spill points. The simulations are “noisy” and reach

more extreme values (both small and large) than the
“smoothed” average map. This highlights the importance of
producing multiple simulations, to provide an idea of the
uncertainty of the predictions. To illustrate how the
simulations differ from reality, the circles on the maps plot
the “observed” values from the original samples. For the
particle size measures, the simulated values are very close
to reality, particularly in the average map.

FIGURE 10 | Scatter plots of the validation results for the particle-based geostatistical modelling for modal mineralogy and particle-size
(ECD) distribution parameters. The 95% confidence intervals are determined by a combination of geostatistical simulation and bootstrap
resampling, as described in the methods section. The 1:1 line, a regression line and a local regression curve are plotted to show the average
deviations of the estimated properties from the observed properties.
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The average maps of further properties are provided in
Figure 12, including the contents of the silicate minerals,
sheet silicate minerals, dolomite, pyrite and sphalerite, as
well as the sphalerite grain size and surface liberation
parameters as examples of the textural properties of the
sulphide minerals, which follow the same trends. Maps of
simulation examples for these properties and others are
provided in Supplementary Figures S4–S7. The silicate
mineral content is higher around the dam walls and
decreases towards the centre, while the sheet silicate
minerals content follows the opposite trend. The carbonate
mineral simulations are mostly noise, with large differences to
the “observed” values, but a slight increase in carbonate
content away from the dam walls is noticeable.

The sulphide minerals become more abundant towards the
centre of the deposit, agreeing with the findings of Blannin et al.
(2023, 2022b) that the sulphide-hosted metals Cu, Zn, Pb, As, Cd,
and In were most enriched in the this zone. The individual
simulation realisations of the sphalerite grain size and surface
liberation parameters are rather noisy and generally vary from the
“observed” values as a result of the larger uncertainties in the
predictions. However, on average, these predictions are closer to
reality and the sphalerite grain size p90 and standard deviation
decreaseaway from thedamwalls,while this trend is lessapparent
for the p50. The frequency of the>60%sphalerite surface liberation
class is significantly higher than the other classes and increases
towards the centre of the tailings deposit, in contrast to the <20%,
20%–40%and40%–60%classeswhich aremost abundant around

FIGURE 11 | Spatial maps of the particle size parameters of the ECD, including p50, p90 and standard deviation of log (ECD). The maps are
plotted for three simulations as examples and the average of the 250 simulations. The circle points are the “observed” data from the
original samples.
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the damwalls. In summary, the abundanceoffine-grainedandwell-
liberated sulphide mineral grains increases towards the centre of
the TSF (Figure 12).

Potential Applications of Particle Models
The aim of building particle-based geometallurgical models
should be to enable further geometallurgical modelling of
mining and processing behaviour, as well as to investigate
other relevant material properties of the tailings, such as
environmental parameters. Two applications of the particle
model were tested to assess the utility of the particle data for
process modelling and environmental assessment and these
results are reviewed in the following.

Resource Potential and Process Modelling
For tailings valorisation, it is important to understand which
processingmethods are applicable for the recovery of valuable
and critical metals from the tailings. As previously stated,
flotation test work was outside the scope of this study.

Instead, a simple bulk sulphide flotation process was
simulated using the particle data, assigning probabilities of
recovery to sulphide-bearing particles based on sulphide
surface liberation and particle size. This process intended to
investigate the “recoverability” of the sulphide minerals with
flotation, inform on potential processing routes and highlight
the value of particle data for such purposes.

The results of the flotation simulations are shown in
Table 2. The predicted “in-situ” contents of the sulphide
minerals are low (medians of 0.03–0.49 wt. %), with the
exception of pyrite, with an average of 3.3 ± 0.3 wt. %.
According to the process simulations, the recoverable
portions vary from around 45% of the content for galena
and chalcopyrite and up to 66% for arsenopyrite. The total
sulphide mineral content has a median of 4.13 wt. %, of which
58% is estimated to be recoverable by flotation. To investigate
any spatial dependence of the sulphide mineral recoverability,
maps of the total sulphide content, both “in-situ” and
recoverable were plotted, as well as the proportion of

FIGURE 12 | Spatial maps of the contents of silicate and sheet silicate minerals, dolomite, pyrite and sphalerite, as well as the grain size and
surface liberation parameters of sphalerite. The maps are plotted for the average of the 250 simulations and the points are the “observed” data
from the original samples. SD, standard deviation.

TABLE 2 | Summary statistics from the 250 simulations for the mean sulphide mineral and total sulphide mineral contents of the whole TSF, as well as the recoverable
sulphide mineral contents and the average proportion of recoverability (Av. Prop. rec.) from the flotation process simulations. CL, confidence level.

In-situ content Recoverable content

Mineral Median (wt. %) Error (%) at 95% CL Median (wt. %) Av. prop. rec. (%)

Pyrite 3.32 9.9 1.93 58
Sphalerite 0.26 11.5 0.13 53
Chalcopyrite 0.03 7.6 0.02 45
Galena 0.04 9.2 0.02 44
Arsenopyrite 0.49 12.2 0.32 66
Total sulphide 4.13 10.0 2.42 58
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recoverability (Figure 13). The proportion of recoverable
sulphide minerals decreases towards the centre the TSF,
demonstrating that the well-liberated sulphide grains are
likely too fine to be recoverable with froth flotation.

Acid Mine Drainage Potential
The potential for AMD generation from the tailings was
estimated based on the contents of sulphide and carbonate
minerals, combined with their reactivities and acid-generating
or -neutralising values. The CARD risk ratio is defined as the

ratio between the calculated acid-generating and -neutralising
potentials (Parbhakar-Fox et al., 2016).

The summary statistics from the 250 simulations of the
“total” CARD risk ratio, calculated for the whole tailings, are
given in Table 3. With a certainty of 95%, the “total” CARD risk
ratio lies between 0.43 (high risk) and 1.27 (potential risk).
The median “total” CARD risk ratio is 0.72, which is defined as
moderate risk (Parbhakar-Fox et al., 2016). AMD potential is
fairly constant within most of the tailings material, with
medium to extremely high CARD risk ratings (Figure 14).

FIGURE 13 | Spatial maps of the total sulphide mineral content, recoverable sulphide mineral content, and proportion of recoverable
sulphide mineral content. The maps are plotted for three simulations as examples and the average of the 250 simulations. The circle points are
the “observed” data from the original samples.

TABLE 3 | Summary statistics of the total CARD risk ratio estimates for the whole TSF from the 250 simulations.

Property Minimum 2.5th percentile Median 97.5th percentile Maximum Mean Standard deviation

CARD risk ratio 0.39 0.43 0.72 1.27 2.32 0.74 0.22
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The tailings materials in the north of the deposit and nearer
the dam walls have lower CARD risk ratios (moderate or
probable risk), coinciding with lower sulphide mineral
contents. Although the carbonate contents were generally
not well predicted and likely increase the variability in the
CARD risk ratio estimates, the “total” CARD risk ratio should
be well constrained on average, and its variability accounted
for by the simulations.

DISCUSSION

In the following subsections, the accuracy of the results is
discussed, with a particular focus on its link to the
sedimentary-style deposition of the tailings. Secondly, the
applications of the particle data are discussed, with a focus
on processing and environmental behaviour of the tailings.
Lastly, the limitations of the applied method are considered, as
well as opportunities for further development.

Quality of Modelling Results and the Link to
Sedimentary-Style Deposition
The unique combination of methods for the geometallurgical
modelling of tailings deposits developed in this work has
proved capable of accurately modelling the particle sizes
and the bulk mineral contents of major mineral groups and
the sulphide minerals. The sulphide mineral surface liberation
and grain size parameters were reasonably well to well
reproduced in most cases. In contrast, the contents of other

minor mineral groups were not as well constrained. The
reasons for these apparent variations in the quality of the
results will be discussed in the following.

The distribution of particle types within a TSF is controlled
by the sedimentation processes occurring during tailings
deposition. Particle size and density, which are closely
linked to mineralogy, are the dominant controls on particle
sorting. Coarser and denser particles are deposited proximal to
spill points and finer, less dense particles travel further into the
centre of the TSF. The location of a past spill point is
highlighted in Figure 1B, where a depositional fan can be
seen. This effect is confirmed by the particle size p90s,
which decrease away from the dam walls (Figure 11). The
excellent prediction of particle sizes and bulk mineralogy is
attributed to the systematic variations in the frequency of
different particle types across the tailings deposit that
results from the sedimentation processes. As a result of
this, the modelling workflow developed here may not be as
successful for TSFs where sedimentary-style deposition of the
tailings has not occurred, e.g., dry stack (thickened) tailings.

Conversely, the grain sizes and degree of surface liberation of
the sulphide minerals are not primary controls on the
sedimentation of particles, and therefore, may not be expected
to exhibit a systematic trend across the tailings deposit. However,
the froth flotation process rejects coarse, intergrown particles and
fine, liberated particles.Mineral grain size is equivalent or similar to
particle size when the mineral is fully or highly liberated and
therefore mineral grain size and surface liberation will correlate
with particle size to some degree. A particle containing a well-
liberated sulphide grain will usually be mainly comprised of the

FIGURE 14 | Spatial maps of the CARD risk ratio estimated from the sulphide and carbonate mineral areas, for a random selection of
simulation realisations to illustrate how the CARD risk ratio varies across the TSF and between simulations. ER, extreme risk; HR, high risk; MR,
moderate risk; PR, potential risk; LR, low risk. On the right, the probability of the CARD risk ratio being <0.6, i.e., ER or HR, calculated from the
250 simulations, is also plotted.
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sulphide mineral and as a result, surface liberation will also be
related to mineralogy. Consequently, grain size and surface
liberation of the sulphide minerals can be expected to be
somewhat linked to the sedimentary-style depositional processes.

This helps to explain how the sulphide grain size and
surface liberation properties could be reasonably well
predicted in some cases, although with large uncertainties.
The high uncertainty of these predictions is in fact expected for
properties of minerals present at minor and trace abundances
(e.g., Bevandić et al., 2022; Blannin et al., 2021). In addition, a
grid pattern in the sulphide mineral p50 predictions
(Supplementary Figure S3) reduces the quality of the
predictions and is an artefact from the pixel size of the MLA
measurements and the high number of fine grains comprising
only one, or a small number, of pixels. However, the main cause
of the poorer prediction of the surface liberation class
frequencies is that the majority of the “mixed particles
containing sulphide minerals” bin frequencies were poorly
constrained, with Obs-Pred R2 values of 6%–36%
(Supplementary Table S14). This is caused by the complex
nature of these particles, which may be associated with
different minerals in different proportions, producing variable
behaviours in the sedimentation process throughout the TSF.
Despite this, the majority of the sulphide mineral grains are in
the “fully liberated sulphide particles” bins (Figure 8), which
were well predicted (Obs-Pred R2 values ~60–80%). As a result,
grain size and surface liberation can be assumed to be
reasonably well constrained on average.

Of all the minerals/mineral groups investigated, the carbonate
mineral contents were most poorly estimated, with no clear
spatial trends across the TSF and the predictions being mostly
noise around themean (Table 1; Figure 10;Supplementary Figure
S7). This is attributed to poor prediction of the majority of the
carbonate group bin frequencies (Supplementary Table S14). The
carbonate mineral contents could be expected to correlate with
the CaO content. However, the CaO content was relatively poorly
predicted by the geostatistical modelling with an Obs-Pred R2 of
55% (Supplementary Table S11), and does not exhibit a clear
trend across the deposit (Blannin et al., 2023). This is likely related
to the fact that Ca occurs inmultipleminerals, including feldspars,
amphibole, gypsum, and fluorite, which are variably present
across the TSF. It is also possible that the carbonate minerals
were not well sorted during the deposition of the tailings. Overall,
the chemical elements used here cannot be considered a good
predictor of the carbonate contents. The inclusion of more
elements which comprise the minerals of interest, such as
carbon for carbonates, could help to improve the results for
some mineral species but would also require further
geochemical analyses.

The error bars on the carbonate mineral contents are of the
same order of magnitude as the spread of the data, as seen in
Figure 10, implying that the observed variance and resampling
error are comparable. To test this hypothesis, it is assumed
that the variogram nugget is the sum of analytical error plus
microscale variability. The component of analytical error can
be quantified as the width of the confidence interval of the
bootstrap resampling simulations. A nugget larger than the

analytical error would indicate the presence of “microscale
variability,” i.e., variogram structures with ranges smaller than
the shortest distance between the samples. Further sampling
and data acquisition would be required to capture these
microstructures and improve the modelling results. If the
nugget and analytical error are similar, it can be assumed
that much of the observable variability is due to analytical
uncertainty, which cannot be reduced and as such, the
geostatistical modelling results could not be improved by
further data or more complex modelling.

Following this approach, variograms were computed for the
properties that were most poorly predicted (carbonate mineral
contents and pyrite surface liberation class abundances) as
well as selected properties that were well predicted (silicates,
sheet silicates and pyrite contents) for comparison. Variogram
models were fitted (Supplementary Table S16; Supplementary
Figure S8) and the nugget was converted to a “spread”
measure according to Equation 6:

Spread � 4 ×
������
nugget

√
(6)

The 95% confidence intervals, which correspond to ± 2σ and
are therefore analogous to the “spread” measure, were
calculated using the 250 “observed” bootstrap resampling
simulations. The results are provided in Table 4, where it
can be seen that the “spread” and confidence interval of the
sheet silicate, calcite, dolomite, and ankerite contents are
almost equal. The same can be said for the <20% and
20%–40% surface liberation classes of pyrite. It follows that
the prediction of the sheet silicate and carbonate mineral
contents and poorly liberated pyrite class frequencies could
not be improved with the currently available samples and data
since they are mostly due to analytical uncertainties. In
contrast, the confidence intervals of the silicates and pyrite
content, and the 40%–60% and >60% surface liberation classes
of pyrite are significantly greater than the “spread.” This may
imply that the nugget components of the variograms of the
associated particle bins were under-estimated during

TABLE 4 | The nuggets of fitted variogram models of the silicates, sheet
silicates, carbonatemineral and pyrite contents, and pyrite surface liberation
(Py lib.) classes , alongside the corresponding “spread”measures. These values
were compared to the confidence interval (CI) at 95% confidence level (CL) of the
given particle property from the 250 bootstrap simulations.

Property Nugget Spread � 4 ×
�������
nugget

√
CI @ 95% CL

Silicates (wt. %) 5.7 × 10−4 0.095 0.158

Sheet silicates (wt. %) 8.0 × 10−4 0.113 0.109

Calcite (wt. %) 7.2 × 10−7 0.003 0.005

Dolomite (wt. %) 3.5 × 10−6 0.007 0.006

Ankerite (wt. %) 1.5 × 10−6 0.005 0.003

Pyrite (wt. %) 1.5 × 10−5 0.015 0.028

Py lib. <20% 2.4 × 10−5 0.020 0.019

Py lib. 20%–40% 1.5 × 10−5 0.015 0.015

Py lib. 40%–60% 1.0 × 10−5 0.013 0.020

Py lib. >60% 4.0 × 10−5 0.025 0.053

The values in bold are those where the estimated analytical error (confidence interval)
significantly exceeds the “spread” measure.
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variogram fitting, which aimed to select to most parsimonious
trend-variogram model for each particle bin.

Particle Models: Implications for Resource
Potential and Environmental Behaviour
Two potential applications of the particle-based models have
been shown to produce valuable results considering the
processing and geoenvironmental characteristics of the
tailings. In the following section, the implications of the
findings of this study for the resource potential and
environmental behaviour of the tailings deposit will be discussed.

In the Davidschacht TSF, the elements of interest are
concentrated in the sulphide minerals. Therefore, an
appropriate processing route may include a stage of froth
flotation to recover a sulphide mineral concentrate and a
“clean” residue (Babel et al., 2018; Bilal et al., 2022; Manca
et al., 2021). The sulphide concentrate could be further
processed, likely with leaching (Álvarez et al., 2021; Kamariah
et al., 2022; Schueler et al., 2021) or bioleaching (Opara et al.,
2022; Ristović et al., 2022; Romero-García et al., 2019) to recover
the valuable metals. The “clean” residue could be used in
industrial applications (Helser et al., 2022a; Kinnunen et al.,
2022; Veiga Simão et al., 2021b). To emphasise the value of
particle data for informing on potential processing routes, a
simple bulk sulphide flotation process was simulated to
investigate the recoverability of sulphide minerals with flotation.

The results of the flotation simulations (Table 2) imply that
around 58% of the total sulphide mineral content may be
recoverable by flotation. Therefore, approximately 40% of the
sulphide-bearing particles would remain in the tailings after
flotation. The residual tailings may be amenable for use in
geopolymers (Niu et al., 2022), but the high S and heavy metal
contents would exceed the requirements for ceramics production
(Helser et al., 2022a; Veiga Simão et al., 2021a). Processing test
work should be performed to confirm the findings of the flotation
simulations, and to determine an alternative approach to both
recover the valuable elements and produce a “clean” residue. Fine
particle flotation methods could potentially achieve higher
recovery rates (e.g., Coelho Braga de Carvalho et al., 2023;
Whitworth et al., 2022). Instead, direct leaching or bioleaching
may provemore efficient and cost-effective (Mäkinen et al., 2020;
Opara et al., 2022; Reynier et al., 2021). Using bioleaching, Martin
et al. (2015) achieved recoveries of 81% Zn and 87% In from the
Davidschacht tailings. Further method development is needed to
enable the recovery of valuable metals such as Cu and Pb, and
deleterious elements such as S and As.

The results of the flotation simulations demonstrate what
can be achieved with particle data to investigate appropriate
processing methods. For the purposes of this work, the simple
flotation simulations were sufficient, but to model processes
more accurately would require many more parameters and
increased complexity. The works of Pereira et al. (2022, 2021b,
2021a) have demonstrated that mineral processing operations
can be simulated using particle data from automated
mineralogy analyses of products from processing tests. The
ultimate goal should be to integrate the spatial particle-based

modelling developed in this work with such process models to
simulate the processing of the entire deposit. The integrated
particle model could be used for optimisation purposes,
followed by economic modelling of mining and processing
operations for a complete geometallurgical model of all stages
of the mining value chain. Tailings deposits would be
particularly well-suited to such an approach, because they
are already particulate in nature. Primary ore deposits
require further mining and processing steps, e.g., blasting,
crushing, and milling, for which no sufficiently detailed
particle-based models yet exist (Pereira et al., 2023).

Regarding the environmental behaviour of the tailings, the
potential for AMD generation was estimated from the particle
data using the CARD approach developed by Parbhakar-Fox et al.
(2016). The results indicate that the tailings pose a moderate risk
for AMD production (Table 3). This implies that the carbonate
minerals present, calcite, ankerite and dolomite, are not sufficient
to neutralise the high acid-generating potential of the sulphide
minerals, particularly pyrite (Jambor et al., 2007; Noble et al.,
2015). The potential for remobilisation and leaching of heavy
metal(loid)s, including Cd, As and Pb, from the Davidschacht TSF
has been established by BIUG (2009) and G.E.O.S. (2012).
Furthermore, a recent study by Helser et al. (2022b)
determined that the sulphide-associated heavy metal(loid)s in
the Davidschacht tailings are highlymobile and bioaccessible and
the tailings pose an environmental threat in their natural state,
meaning that some remediation may be required.

The CARD method is an elegant technique to rapidly estimate
AMD potential based on automated mineralogy measurements
rather than time-consuming static testing. However, AMD
reactions are also influenced by other material properties, such
as the exposure of the sulphide and carbonateminerals to oxygen
and water (liberation and grain size), as well as their spatial
relations (mineral associations), which are not accounted for in
the CARD equations. Additionally, the method is most applicable
for un-weathered samples, rather than tailings from historic TSFs
which are commonly oxidised to some extent, or fully oxidised in
the oxidation zone. When sulphide minerals are depleted,
secondary minerals may drive acid production (Elghali et al.,
2021), and therefore the CARD risk ratio is likely a conservative
estimate of AMD potential.

As described by Parbhakar-Fox and Baumgartner (2023),
environmental parameters are becoming increasingly
important geometallurgical properties for inferring
environmental behaviour of future wastes. For tailings in
particular, an understanding of the current and future
environmental impacts of the materials is vital. Even when
sufficient economic potential cannot be defined, mitigation of
environmental risks may drive the need for remediation or
remining of a TSF. Particle models provide a good
opportunity to further develop methods for predicting
environmental behaviour of tailings, such as the CARD
method for AMD potential and reactive transport modelling
to investigate remobilisation and leaching of heavy metals.

Overall, promising results were achieved with the particle
models, and the applications tested proved to be insightful
regarding both processing and environment behaviour. In the
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future, geometallurgical modelling of TSFs should consider not
only economic factors but also environmental factors.

Limitations of the Current Method and
Opportunities for Further Development
Given the complexity of the problem being tackled in this study,
the authors express the opinion that the results of the
integrated modelling method presented here provide a good
starting point for the spatial interpolation of particle
populations. This section discusses the limitations of the
current method and the opportunities for further development.

Dealing with the particle data was highly computationally
intensive, and as a result, running the codes used a great deal
of computational memory and was very time consuming. Each
simulation comprised 3 billion particles, which meant that it was
impossible to retain the entire population of particles for each
simulation, and only certain properties could be extracted (larger
than memory problem). The computational limitations also meant
that thebinninghad tobeperformedon thebasis of distributionsby
number of particles rather than mass, which would be preferable,
particularly for, e.g., the binning of the particles by particle size. This
was because randomly sampling from multiple particle classes
while maintaining the correct mass ratios would require
constrained sampling algorithms which, to the authors
knowledge, are not yet available for such large amounts of data.
To reduce the run-time of the simulations, the options would be to
sample fewer particles at each grid point and/or use a larger grid
spacing. However, this would increase sampling errors due to the
lower particle count, increasing uncertainty in themodelling results,
and reduce spatial resolution. Future researchwill have toweigh-up
the desired resolution and the memory/time capacity for running
the simulations to optimise the number of simulations, grid points
and particles per grid point, especially if the approach is to be
extended to 3D modelling.

The exhaustive dataset available for this work, i.e., the
historical aerial photograph of the tailings deposit and the
chemical data obtained from geostatistical modelling, helped
to improve the geostatistical modelling results and therefore
the overall workflow. This is due to the link of these data to
particle size and mineralogy, and therefore, the sedimentation
processes occurring during tailings deposition. A possible
advancement to the method would be to incorporate other
exhaustive data which correlate well with different material
properties to improve the predictability of properties not related
to particle size. If extending the method to a 3D system,
exhaustive data such as geophysical surveys may help to
resolve the particle populations occurring at depth. In such
cases, historical images could only be used if taken at regular
timeand/or space intervals as the TSFhasbeenfilled, allowing for
good spatial coverage and accurate correlation of the images to
specific depths. However, geochemical data alone may be
sufficient for modelling, without the need for further exhaustive
data, which should enable the application of this methodology in
other TSFs where aerial image data is not available.

Another approach for interpolating the particle populations
could be to parameterise the distributions of the particle

properties and interpolate the resulting parameters. This would,
however, require some developments in the applicable probability
distributions. Other than this, the geostatistical workflow was
optimised and could not be further developed within this case
study. The leave-one-out cross-validation results are excellent
given the complexity of interpolating particle populations, and
are comparable to cross-validation in more conventional,
i.e., geochemistry-focused, geostatistical studies.

The main room for improvement in the applied methodology
lies in the definition of the particle types. Statistical clustering
methods were not applicable, and instead, manual binning was
performed. In fact, neither of these approaches is ideal because
they do not take the spatial dependence of the particle types into
account. An opportunity to further improve the binning approach
would be to redefine the particle classes to account for these
spatial predictability effects. To do so, it would be necessary to
assess the spatial variability of the individual particle types, and
notmix those types which show some structure with those which
are randomly distributed. Further testing and development are
required to find a method to optimally decompose the
multivariate distribution of particle properties into bins or a
linear mixture of parametric sub-distributions.

CONCLUSION

This study applied a new and innovative combination of
methods to perform geometallurgical modelling for a TSF
case study. The integration of geostatistical modelling and
particle binning allowed comprehensive particle-based
simulations to be produced, accounting for the spatial
trends in the data and providing detailed simulations of
particle population distributions that could be used to
calculate multiple material properties of interest and
corresponding uncertainties. Any properties that are strongly
associated with the sedimentary-style depositional processes,
or correlate well with properties that are, can be well predicted,
including mineralogical and textural properties.

However, the method developed here is complex and
requires a great deal of user-input and expertise. Although
the method has proven challenging to implement and validate,
given the complex nature of the problem at hand, the results we
achieved here are highly promising. There is naturally room for
improving the method, but the work done here provides a
sound foundation. Where data is available, the approach
should be extended to a 3D particle-based model, although
it remains to be seen if the method will remain effective when
fewer samples or no exhaustive data are available, or when
sedimentation processes were not as dominant in
systematically controlling the spatial distributions of the
particle types, such as in paste-fill TSFs.

The results of this study also underline the importance of
incorporating uncertainty estimations into geometallurgical
modelling. The variability in the modelled properties can be
significant, and may greatly impact processing behaviour,
i.e., mineral recoveries and thus the economics of re-
processing. Ultimately, the aim should be to directly link the
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spatial particle-basedmodel to a processingmodel to simulate the
mining and beneficiation of the deposit. Considering the
complexity of the sulphide-bearing particles, i.e., varying grain
sizes and degrees of surface liberation within particles of
different sizes, a good quality of prediction was achieved for
the sulphide grain size and surface liberation properties. The
results are well capable of informing on the processing
potential and environmental behaviour of the tailings. Therefore,
this study represents an important step towards the integration of
geometallurgical models and particle-based process simulations,
which is expected to improve the accuracy of mineral resource
and reserve estimations and reduce economic risks associated
with all stages of the mining value chain.
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