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Disruptions to the global supply chains of critical raw materials (CRM) have the
potential to delay or increase the cost of the renewable energy transition. However,
for some CRM, the primary drivers of these supply chain disruptions are likely to be
issues related to environmental, social, and governance (ESG) rather than geological
scarcity. Herein we combine public geospatial data as mappable proxies for key ESG
indicators (e.g., conservation, biodiversity, freshwater, energy, waste, land use, human
development, health and safety, and governance) and a global dataset of news events
to train and validate three models for predicting “conflict” events (e.g., disputes,
protests, violence) that can negatively impact CRM supply chains: (1) a knowledge-
driven fuzzy logic model that yields an area under the curve (AUC) for the receiver
operating characteristics plot of 0.72 for the entire model; (2) a naïve Bayes model that
yields an AUC of 0.81 for the test set; and (3) a deep learningmodel comprising stacked
autoencoders and a feed-forward artificial neural network that yields an AUC of 0.91 for
the test set. The high AUC of the deep learning model demonstrates that public
geospatial data can accurately predict natural resources conflicts, but we show that
machine learning results are biased by proxies for population density and likely
underestimate the potential for conflict in remote areas. Knowledge-driven methods
are the least impacted by population bias and are used to calculate an ESG rating that is
then applied to a global dataset of lithium occurrences as a case study. We
demonstrate that giant lithium brine deposits (i.e., >10 Mt Li2O) are restricted to
regions with higher spatially situated risks relative to a subset of smaller pegmatite-
hosted deposits that yield higher ESG ratings (i.e., lower risk). Our results reveal trade-
offs between the sources of lithium, resource size, and spatially situated risks. We
suggest that this type of geospatial ESG rating is broadly applicable to other CRM and
that mapping spatially situated risks prior to mineral exploration has the potential to
improve ESG outcomes and government policies that strengthen supply chains.
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INTRODUCTION

The global transition to renewable energy is expected to be
materially intensive (IRP, 2019; International Energy Agency,
2021; International Energy Agency, 2022). A significant
proportion of the critical raw materials (CRM) required to
manufacture renewable energy technologies will need to be
sourced from new mineral deposits or expansions of existing
mining operations because improved recycling by itself is
unlikely to meet the expected surge in demand (Graedel
et al., 2012; Jones et al., 2020; Lee et al., 2020; Michaux,
2021). However, geological abundance within known mineral
deposits is not the primary factor limiting the supply of most
CRM (Herrington, 2013; Månberger and Stenqvist, 2018; Jowitt
et al., 2020; Mudd, 2021). Instead, geopolitical factors, social
license, and environmental risks are some of the key
challenges threatening to delay or increase the cost of new
mineral projects (Erdmann and Graedel, 2011; Graedel and
Reck, 2016; Mudd and Jowitt, 2018; Jowitt et al., 2020; Lèbre
et al., 2020; Lèbre et al., 2022). The global supply chains of CRM
are also susceptible to resource nationalism (Barandiarán,
2019), export bans (Pandyaswargo et al., 2021), and severe
price fluctuations because processing is restricted to just a few
places around the world (Rosenau-Tornow et al., 2009;
Mancheri et al., 2019). Countries that are highly dependent
on the import of CRM for their manufacturing industries are the
most likely to be impacted by these potential issues. In
response, governments that are reliant on imports are
developing natural resource policies that on-shore, or
“friend-shore” (Franks et al., 2014; Vivoda, 2023; Vivoda and
Matthews, 2023), the exploration, production, and processing
of CRM to diversify and secure supply chains. Any increased
mineral exploration and development resulting from these
policies will likely accelerate pressure on natural
ecosystems, particularly in greenfield exploration settings
that may have previously been deemed too remote and/or
costly to operate. Shifting supply chains towards CRM frontiers
may also have severe impacts for local communities and the
ability for corporations to acquire the social license to operate
(Lèbre et al., 2020; Hanacek et al., 2022; Owen et al., 2023).
New methods are urgently needed to balance CRM
development with Environmental, Social, and Governance
(ESG) principles (Mudd, 2010; Herrington, 2013; Friede et al.,
2015; Halbritter and Dorfleitner, 2015; van Duuren et al., 2016;
Ali et al., 2017; Kotsantonis and Serafeim, 2019; Lèbre et al.,
2019; Jowitt et al., 2020; Lèbre et al., 2020; Watari et al., 2021;
Lawley et al., 2022a; Devenish et al., 2022; Chen et al., 2023;
Edmans, 2023; Hine et al., 2023; Stewart, 2023).

The modern concept of ESG is often attributed to the “Who
Cares Wins” report published by the United Nations (2004), but
is in fact rooted in older corporate social responsibility
principles that call for voluntary actions by businesses to
extend their practices beyond mere legality (van Duuren
et al., 2016; Gillan et al., 2021; Kim and Li, 2021; Arvidsson
and Dumay, 2022; Bester, 2022; He et al., 2022; Uyar et al.,
2022). Since 2004, ESG principles have become embedded in
the world’s largest investment firms, corporate reports, and the

unregulated informal economy (Gillan et al., 2021; Kim and Li,
2021; Arvidsson and Dumay, 2022; Bester, 2022; He et al.,
2022). The idea behind this investment strategy is an
inferential one—that sustainable businesses are associated
with higher profits and lower risks over time because they
provide more direct benefits to the people and places where
they operate. The financial benefits to sustainable investing in
the short-term are less clear and there is a growing political
backlash by those who consider ESG as an encroachment on
the free-market economy (Kotsantonis and Serafeim, 2019;
Kim and Li, 2021; Chen et al., 2023; Edmans, 2023).
Nevertheless, the trend towards ESG investing has had a
major impact on the minerals sector and there is a growing
interest more generally within geoscience tomeasure progress
towards the United Nations Sustainable Development Goals
(SDG; Mudd, 2010; Herrington, 2013; Ali et al., 2017; Vivoda and
Kemp, 2019; Stewart, 2023; Fu et al., 2024).

Embedding ESG principles into themining sector represents
an opportunity to strengthen the global supply chains of CRM
by mitigating some of the major sources of risks (van Duuren
et al., 2016; Mudd and Jowitt, 2018; Valenta et al., 2019; Lèbre
et al., 2020; Lèbre et al., 2022; Maybee et al., 2023; Fu et al.,
2024). Improved transparency around ESG issues is also
critical for impacted communities (Prno, 2013). Regulators
and corporations are adapting to this change by improving
ESG risk disclosure, as has recently been proposed for mineral
resource reporting in Canada, Australia, South Africa, and the
United Nations (Pell et al., 2021; CIM, 2023). If these changes to
reporting standards are ultimately approved and sustained,
corporations will be expected to embed ESG principles into
their decision-making process for each mineral project and to
quantify their environmental and social impact across their
project portfolio. However, neither of these corporate- and
project-level reporting mechanisms place ESG ratings within
a regional or global context, despite the fact that most CRM
projects are clustered within mineral districts operated by
multiple companies (Kröger, 2016; Lèbre et al., 2019; Lèbre
et al., 2020; Hanacek et al., 2022; Lèbre et al., 2022; Garcia-
Zavala et al., 2023; Rossi et al., 2024). The cumulative ESG
footprint ofmineral districts is greater than any individual mine.
The potential of impacts of individual mineral projects can also
be manifested beyond the limit of mining operations and occur
at a variety of spatial (and temporal) scales, ranging from local
habitat destruction to the cumulative effects of increased
greenhouse gas emissions that impact the globe. The
complex interactions between these types of “spatially
situated” risks are the focus of emerging research on
“spatial finance” and “geospatial ESG” (Lèbre et al., 2019;
Lèbre et al., 2020; Patterson et al., 2020; Caldecott et al.,
2022; Lèbre et al., 2022; Patterson et al., 2022; Garcia-
Zavala et al., 2023; Garcia-Zavala et al., 2023; Savinova
et al., 2023; Rossi et al., 2024).

Previous efforts to map spatially situated risks in a CRM
context have focused on the spatial overlap between ESG
indicators and mineral deposits (Northey et al., 2017; Lèbre
et al., 2019; Valenta et al., 2019; Lèbre et al., 2020; Sonter et al.,
2020). These studies demonstrated that a significant
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proportion of global CRM resources (e.g., 84% of platinum
resources and 70% of cobalt resources) are situated in “high-
risk” regions (i.e., low ESG ratings; Lèbre et al., 2020).
Accurately predicting and then managing spatially situated
risks throughout the mineral development cycle (i.e., from
exploration to closure) has the potential to lead to a range
of positive ESG outcomes, particularly if incorporated as part of
a “plan-do-check-act” cycle (Bereskie et al., 2017; Stemn et al.,
2020). This type of iterative approach to land-use planning and
natural resources development represents an opportunity to
improve the ESG ratings of high-risk regions over time.
However, previous studies have not assessed whether
regions identified as “high-risk” translate to actual conflict
events (e.g., disputes, protests, violence). As a result, the
significance of the geospatial ESG ratings and the degree to
which these previous studies fully captured the ESG context of
mineral projects remains unclear. Validating geospatial ESG
ratings with real conflict events is a critical step to assess the
strengths and weaknesses of the different modelling
methodologies. The key question then becomes can public
geospatial data be used to accurately predict natural resource
conflicts? Assuming this is the case, what then are the
implications of a geospatial ESG rating for CRM development?

Herein we build on previous efforts tomap spatially situated
risks in a CRM context to address those knowledge gaps
(Figure 1; Northey et al., 2017; Valenta et al., 2019; Lèbre
et al., 2019; Sonter et al., 2020; Lèbre et al., 2020). Model
results support government policies that seek more
responsible sources of CRM, inform sustainable investing
decisions, and can contribute to data-driven land-use
planning at global to regional scales. First, we translate ESG
principles to mappable criteria (Supplementary Table S1).
Public geospatial data are then combined using the
S2 discrete global grid system1 (Figures 2A, B). Three
models are presented to predict the types of natural
resources “conflict” (e.g., disputes, protests, and violence;
Martinez-Alier, 2021; Halterman et al., 2023) that have the
potential to impact CRM project budgets and timelines: (1) a
knowledge-driven fuzzy logic model; (2) a simple supervised
naïve Bayes model; and (3) a more advanced deep learning
model based on stacked autoencoders and a feed-forward
artificial neural network (Figure 1). The presence or absence of
natural resources conflict events of varying severity, which
were extracted from the previously published POLECAT
dataset of global news stories (Halterman et al., 2023), are
used as positive and negative labels, respectively, to train and
validate the more advanced machine learning models
(i.e., naïve Bayes and deep learning; Figure 2C; Halterman
et al., 2023). Results from the knowledge-driven model are
used to generate an ESG rating that is then applied to a global
dataset of lithium mineral occurrences as a case study
(Figures 2D–F). Lithium is used as a case study example
because some of the geological sources of this CRM are
geographically restricted (e.g., lithium brines are restricted

to high elevations and/or low latitudes) and associated with
distinct ore characteristics as well as extraction and
processing routes. Although this study is focused on lithium
as a text example, model results are also applicable to other
CRM and natural resources more generally.

DATA

All data included as part of the current study are publicly
available. Each data source was mapped to an ESG
principle and linked to a SDG prior to modelling (Figures 1,
2; Supplementary Figures S1-S3). The complete list of data
sources is presented in Supplementary Table S1.

Environmental Data
Environmental data were sourced from intergovernmental
organizations, academic research, and new derivative
products produced as part of the current study (Figures
2A, B; Supplementary Figure S1; Supplementary Table S1).
The resolution of these data are highly variable, but most
environmental indicators are derived from remote sensing
with individual map pixels representing 100s of m to a few
km. Individual environmental data were combined into six
themes for the purposes of the knowledge-driven fuzzy logic
model, including: (1) conservation; (2) biota; (3)
environmental stressors (i.e., freshwater stress and air
pollution); (4) carbon (i.e., above and below ground
carbon storage); (5) waste management; and (6) energy
(Supplementary Tables S1, S2). Data supporting the
conservation theme include a new protected gap analysis,
which was calculated from the percentage area overlap
between the world protected areas database2 and global
ecoregions (Supplementary Figures S1A, S1B; Dinerstein
et al., 2017). Proxies for ecological representation of
protected areas were further assessed by the percentage
protection of key biodiversity areas in terrestrial, freshwater,
and mountain realms as reported by the United Nations.
Conservation is an important environmental theme for the
SDG of “supporting life on land” (Supplementary Tables S1,
S2). Data supporting the biota theme include models for
biodiversity (Figure 2A; Newbold et al., 2016) and ecological
intactness (Figure 2B; Kennedy et al., 2019); whereas the
environmental stressors themes are mapped using the
semi-quantitative measures of water stress (Hofste et al.,
2019), and air quality (van Donkelaar et al., 2021),
respectively. Carbon-rich landscapes represent other
areas that are important for life and for mitigating future
climate change (i.e., Climate Action SDG), as measured by
carbon above and below ground (Supplementary Figures
S1C, S1D; Spawn et al., 2020; Poggio et al., 2021; Melton
et al., 2022). Missing values for the environmental data
described above were imputed with an average value for
each ecoregion (Supplementary Figure S1).

1https://s2geometry.io/ 2www.protectedplanet.net
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Poor waste management is an important source of natural
resources conflicts and regions that have high potential for
geohazards are particularly vulnerable to mining activities
(i.e., clean water and sanitation SDG) (Owen et al., 2020).
For example, up to 14% of tailings dam failures are due, at
least in part to seismic hazards; whereas another 25% of
tailings dam failures are caused by unusual rainfall and
flooding (Rico et al., 2008). Multiple geohazards proxies
were integrated as part of the current study to estimate the
potential for natural phenomena to trigger mining disasters,
including flooding (Dottori et al., 2016), landslides
(Supplementary Figure S1E; Emberson et al., 2020),
cyclones (World Bank, 2015), drought (Winsemius et al.,
2018; World Bank, 2018), and seismic hazards
(Supplementary Figure S1F; Shedlock et al., 2000). Heat
was also considered as an environmental stressor (World
Bank, 2021). Any missing data were imputed with the
minimum geohazard value (i.e., low-risk). This imputation
step was required because some of the source maps only
included data in areas with high potential for hazards (e.g.,
flood zones) and all other parts of themodels were assumed to
have low potential for geohazards. Dam construction methods
and other anthropogenic sources of mining disasters are not
addressed as part of the current study.

Finally, environmental data also include multiple proxies for
the capacity and/or consumption of renewable energy
(International Renewable Energy Agency, 2021). Mining is
energy intensive and should be based on renewable
technologies wherever possible to achieve emissions targets
(i.e., affordable and clean energy SDG; Azadi et al., 2020).
Energy capacity (i.e., maximum newt generating capacity of
existing power plants) and consumption (i.e., current use)
statistics tend to be reported at the national level in

gigawatts. Missing values were imputed using a continental
average. Any remaining values were then imputed with the
global average.

Social Data
Social data were sourced from a range of intergovernmental
and academic institutions (Supplementary Table S1) and
divided into five themes for the purposes of the knowledge-
driven fuzzy logic model: (1) human settlements; (2) land use;
(2) land rights; (3) health and safety; and (4) gender
development (Supplementary Table S1, S2). The potential
for CRM exploration and/or development to displace local
population were mapped using proxies for population
density (i.e., global human settlements; Schiavina et al.,
2022), crop land (Supplementary Figure S1A; Buchhorn
et al., 2020), and pasture land (i.e., cows, horses, buffalo,
sheep, goats, pigs, chickens, and ducks as livestock;
Supplementary Figure S2B; Gilbert et al., 2015). The spatial
resolution of these data are highly variable, but are mostly
derived from remote sensing with individual map pixels
representing 100s of m to a few km. More than two-thirds
of mining projects are located on, or near, land already
occupied by Indigenous people and other communities
(Owen J. R. et al., 2022). National data for gender
development (e.g., proportion of women in business and
government3 were averaged by country and combined with
sub-national human and gender development indices wherever
possible for measuring regional inequalities (Supplementary
Figures S2C, S2D; Smits and Permanyer, 2019). Addressing
these regional inequalities and accelerating gender equality

FIGURE 1 | Spatial Environmental, Social, Governance (ESG)workflow. First, ESG dimensions are translated tomappable criteria. The source
geospatial data are then spatially indexed and combined using the S2 discrete global grid systems (DGGS). Three models are presented: (1)
knowledge-driven fuzzy logicmodel; (2) supervised naïve Bayes; and (3) deep learningmodel based on stacked autoencoders and a feed-forward
artificial neural network. Both supervised machine learning methods used the presence or absence of conflict evidence as positive and
negative labels for model training, respectively.

3https://unstats.un.org/sdgs/dataportal
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represent two SDG. Semi-quantitative estimates for local
indigenous and community land rights (Wily and Tagliarino,
2018) and indices for vulnerability to climate change (Chen
et al., 2015) represent three other data sources used to map
regional inequalities (Supplementary Figures S2E, S2F). Each
of these semi-quantitative scores are in turn based on based
on dozens of indicators (Chen et al., 2015; Wily and Tagliarino,
2018). National statistics for the total number of work fatalities
and child labour statistics3 were also used as proxies for
assessing health and safety. National data such as these
sometimes represent the only available sources of
information for measuring progress towards the SDG, but
fail to account for the rural-urban divide and other regional
discrepancies that can have a profound impact on natural
resources conflicts. Data supporting the social dimensions
of ESG are also associated with a relatively large number of
missing values, which were imputed using a continental
average (Supplementary Figure S2). Any remaining missing
values were then imputed with the global average. These and
other data limitations are discussed below.

Governance Data
Mappable criteria for governance dimensions were mostly
derived from national statistics provided by the Worldwide
Governance indicators4, including accountability, political
stability, rule of law, government effectiveness, regulatory
quality, and control of corruption (Supplementary Figures
S3; Supplementary Table S1; Kaufmann et al., 2011). Each
of these data sources are, in turn, based on survey responses
acquired by survey institutes, think tanks, non-governmental
organizations (NGOs), and corporations. Peace, justice, and
strong institutions represent one SDG. The scores for each
country for the last 10 years were then averaged as part of the
current study to focus on the perception of governance
performance over the longer term. Rapid changes in
governance perceptions from year-to-year are not reflected
in this analysis. Moreover, the vast majority of these surveys
reflect a general perception of governance performance rather

FIGURE 2 | Global maps showing: (A) biodiversity (Newbold et al., 2016); (B) stressed ecosystems (Kennedy et al., 2019); (C) conflict events
extracted from the POLECAT dataset (Halterman et al., 2023); (D) igneous-hosted lithiummineral occurrences (Labay et al., 2018; Owen J. et al.,
2022); (E) brine-associated lithiummineral occurrences (Labay et al., 2018; Owen J. et al., 2022); and (F) volcano-sedimentary-associated lithium
mineral occurrences (Labay et al., 2018; Owen J. et al., 2022). We interpret high biodiversity and low ecosystem stress as positive indicators
for the purposes of the fuzzy logic model-based ESG rating.

4https://info.worldbank.org/governance/wgi
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than providing information that is specific to CRM. To address
that knowledge gap, perceptions of natural resource policies
from the mining industry and a specific natural resource
governance index were sourced from the Fraser Institute
(Yunis and Aliakbari, 2021) and the Natural Resource
Governance Institute5, respectively. Similar to the World
Bank governance dimensions, average values are reported
for each country for all availability survey years to focus on
longer term trends. Missing governance data were imputed
using a continental average. Any remaining missing values
were then imputed with the global average.

Natural Resources Conflict Data
Decades of empirical research has shown that natural
resource development has the potential to cause conflicts,
including pollution, habitat destruction, armed conflict, social
unrest, inequality, poverty, human rights abuses, gender-based
violence, corruption, political instability, authoritarian regimes,
and resource nationalism (Figure 2C; Humphreys, 2005;
Cuvelier et al., 2014; Lèbre et al., 2020; Watari et al., 2021;
Owen J. R. et al., 2022). The phenomenon whereby regions do
not benefit from the development of their natural resources is
often described as the “resource curse,” “paradox of plenty” or
“Dutch Disease” (Badeeb et al., 2017; Owen et al., 2021).
Predicting these types of conflict is complex because the
cultural, political, environmental, economic, and geographical
causes of natural resources conflict tend to be intertwined, and
the perceptions of the people involved are likely to evolve over
time. Gathering accurate and up-to-date data on natural
resources conflicts represent a major obstacle for the type
of data-driven land-use planning that is the focus of the present
study. The new POLitical Event Classification, Attributes, and
Types (POLECAT) dataset uses natural language processing to
identify and categorize conflict from local news stories to
address that knowledge gap (Halterman et al., 2023) and
replaces the Integrated Crisis Early Warning System (ICEWS;
O’Brien, 2010).

Herein news stories from POLECAT dataset were filtered to
identify “verbal” and “material” conflict (n = 13,202,730). Data
are split between 2018 (n = 4,085,387), 2019 (n = 4,390,276),
2020 (n = 2,247,876), 2021 (n = 1,117,425), and 2022 (n =
1,261,766). All conflict events were further filtered to identify
news stories within the context of “natural resources” (n =
718,140). Conflict data within the context of natural resources
are split between 2018 (n = 186,122), 2019 (n = 248,756), 2020
(n = 134,772), 2021 (n = 54,715), and 2022 (n = 93,755). News
events with missing or imputed spatial coordinates were then
removed from further analyses. The location accuracy of the
remaining news events is unknown, although conflict events
tend to occur in the same locations year after year. Each S2 cell
was also limited to a single conflict for all study years to
remove duplicate new stories (Figure 2C). After removing
duplicates, the remaining natural resource conflicts (n =
5,314; Figure 2C) correspond to a range of severity,

including verbal disputes, protests, physical violence, and
armed conflict. In fact, what is observed in Europe, and
especially Nordic countries, is that a term conflict is an
overstatement and a misleading term when dealing with
disagreements concerning mining (Lesser et al., 2021;
Eerola, 2022). Within the conflict scale of the Environmental
Justice Atlas (EJAtlas), the European events can be classified
as being of low to medium intensity (Martinez-Alier, 2021). A
more appropriate term for mining struggles at the level of
public debate and/or minor demonstrations is “dispute”
(Lesser et al., 2021; Eerola, 2022). Nevertheless, all negative
news stories of varying intensity are hereafter called “conflict”
for simplicity.

We also note that many of the filtered conflicts may only be
partially related to natural resources and an unknown number
of new stories may be completely unrelated to CRM. The
POLECAT dataset does not perfectly capture ESG risks as a
source constraint for CRM, but does reveal that conflicts of
varying level of severity and contexts tend to be closely
clustered in similar locations over 4 years (Figure 2C). The
Armed Conflict Location and Event Data Project (ACLED),
although not used in the current study, also identifies
clusters of violent conflict events that are repeated over
time. The drivers of these conflict clusters are well
understood from a theoretical perspective in some cases
(e.g., corruption, inequality, environmental degradation;
Gleditsch, 1998; Humphreys, 2005; Colgan, 2011; Franks
et al., 2014; Colgan, 2014; Cuvelier et al., 2014; Kröger, 2016;
Martinez-Alier, 2021; Hanacek et al., 2022; Eerola, 2022), but
have proven difficult to map aside from a small subset of
geospatial data used as part of the current that directly
measures violence (i.e., Worldwide Governance Indicators)
(Kaufmann et al., 2011). The presence or absence of
conflict events is used below as positive and negative
labels, respectively, to test whether public geospatial data
can be used to predict the potential for natural resources
conflict within the specific context of CRM. The results are
intended to support CRM decision-making but may also be
applicable to natural resources development more generally
(e.g., oil, gas, forestry).

Mineral Systems
Lithium was selected as the case study because demand for
this CRM is expected to surge over the next decade and the
most important drivers of supply chain disruptions are related
to processing and ESG rather than geological scarcity (Kesler
et al., 2012; Li et al., 2019; Ambrose and Kendall, 2020a;
Ambrose and Kendall, 2020b). Some of the geological
sources of lithium are also restricted geographically, which
presents an interesting test for the geospatial ESG
methodology (Figures 2D–F; discussed below). Two global
mineral occurrence datasets were combined as part of the
current study: (1) the global critical mineral projects dataset
(n = 5,098) described by Owen J. et al. (2022). This list of
critical mineral projects includes rough estimates for the total
Li2O tonnage (i.e., approximate mineral resources and
reserves). These tonnage estimates are not necessarily5https://resourcegovernanceindex.org
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compliant with international mineral reporting standards (e.g.,
National Instruments, NI-43-101; Australasian Code for
Reporting of Exploration Results, Mineral Resources and Ore
Reserves, JORC) and are subject to large uncertainties (Owen
J. et al., 2022). Herein we apply these Li2O tonnages as an
approximate and semi-quantitative indicator of economic
significance rather than accurate and precise measures of
resource size. We also note the extreme difficulty of
calculating mineral resources and reserves for lithium brines
(Kesler et al., 2012); and (2) the global distribution of selected
mines, deposits, and districts containing critical minerals (n =
2,121) published by the United States Geological Survey
(USGS) (Labay et al., 2018). The USGS list of mineral
occurrences contains location and commodity information,
but does not report resources and reserves. Data were
filtered by commodity to include all lithium mineral
occurrences (n = 206). The filtered data comprises lithium
mineral occurrences from 38 countries that range in size from
0–39 Mt of Li2O (Owen J. et al., 2022). Each lithium mineral
occurrence was then re-classified into three mineral systems
as part of the current study: (1) brine; (2) igneous; and (3)
volcano-sedimentary (Figures 2D–F; Kesler et al., 2012; Bowell
et al., 2020; Benson et al., 2023).

Brine Mineral Systems
Brine mineral systems comprise salt lakes and oilfield
formation waters (Figure 2D; Risacher and Fritz, 2009;
Kesler et al., 2012; Munk et al., 2016). These mineral
systems represent approximately 64% of the Li2O tonnages
reported by Owen J. et al. (2022). Examples include the Uyuni
Salt Flat (Bolivia) and Salar de Atacama (Chile). The hot and
arid climate of these regions is essential for concentrating
lithium during evaporation (Munk et al., 2016). As a result, brine
mineral systems are geographically restricted to hot and arid
climates in mountains and/or near the equator. However, in
some cases, hydrothermal fluids and pre-enriched source
rocks (e.g., volcanic rocks) may be required for producing
an economic lithium deposit (Hofstra et al., 2013). The
source of lithium in oilfield formation waters is similarly
complex and likely involves some combination of primary
evaporitic brines with contributions from hydrothermal fluids
interacting with pre-enriched source rocks (Dugamin
et al., 2023).

Igneous mineral systems
The igneous mineral system comprises mostly pegmatite- and
granite-hosted lithium occurrences. This mineral system
accounts for approximately 21% of Li2O tonnages reported
in Owen J. et al. (2022) and occurrences of this type are the
most abundant and geographically widespread (Figure 2E).
Examples of lithium pegmatites include Manono (Democratic
Republic of the Congo) and Greenbushes (Australia). The host
pegmatite body for these mineral systems tends to be up to a
few kilometers thick but can extend laterally for 10s of km.
Spodumene, petalite, elbaite, lepidolite, zinnwaldite, cookeite,
and amblygonite are the primary lithium-bearing minerals in
these systems. Of these, spodumene is the main ore mineral

for lithium chemical production, although petalite and
lepidolite are of increasing importance (Li et al., 2019).
Lithium pegmatite and granite deposits typically occur in
zones of past continental collision, where sedimentary rocks
havemelted (Bradley, 2019). The genesis of lithium pegmatites
is the source of ongoing debate, with two main contrasting
hypotheses: (1) lithium pegmatites are formed by extensive
fractionation of a parental granite; and (2) lithium pegmatites
form by direct crustal anatexis (London, 2005; Müller et al.,
2018; Koopmans et al., 2023).

Volcano-Sedimentary Mineral Systems
Volcano-sedimentary mineral systems comprise clay- and
other sedimentary rock-hosted occurrences (Figure 2F;
Kesler et al., 2012; Bowell et al., 2020; Hofstra et al., 2013).
Lithium at these deposits is structurally bound within clay
minerals (e.g., lithium-bearing smectite and illite; jadarite;
Stanley et al., 2007; Borst et al., 2020) and is concentrated
as part of overprinting hydrothermal fluids (Benson et al.,
2023). Examples of volcano-sedimentary lithium mineral
systems include McDermitt (United States of America) and
Sonora (Mexico). This group also includes the atypical Bonnie
Claire deposit (United States of America) and the Jadar deposit
(Serbia), which are hosted by lithium-bearing carbonate, halide,
and borate minerals rather than clays (Stanley et al., 2007).
Overall, sediment mineral systems comprise approximately
15% of global Li2O tonnages reported by Owen J. et al.
(2022). The locations of all three mineral systems (Figures
2D–F) are used below as an application case study to rank
lithium mineral occurrences according to their ESG rating.

METHODS

Data Processing Methods
All data processing was completed in R using the “sf,” “terra,”
and “tidyverse” packages (Pebesma, 2018; Wickham et al.,
2019). Virtual machines were used for the most memory
intensive operations, typically using the EC2 M5 instances
available through Amazon Web Services6, Posit Workbench,
and SageMaker (Joshi, 2020). Country and continent level
information were taken from the Natural Earth dataset7. In
most cases, ISO 3166-1 alpha-3 codes were used wherever
possible to join national data to their geospatial polygons.
Manual edits were required in a minority of cases to correct
country codes that may have changed through time or to
identify the most closely matching code for data sources
with inconsistent formatting. Linking national data sources
by country code has the potential to create local boundary
artefacts for former overseas colonies and other semi-
autonomous regions.

All geospatial source data were transformed to WGS84
(EPSG:4326) prior to spatial indexing using the S2 discrete

6https://aws.amazon.com
7https://www.naturalearthdata.com/
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global grid system1. The process of spatial indexing
transforms the source map data to a common resolution
using the zonal statistics function in the “exactextractr”
package, which accounts for the fractional coverage
between each input data and S2 cell (Baston et al., 2021).
This study is based on resolution 12 of the S2 discrete global
grid system, which corresponds to 26,752,643 unique cell
identification numbers for terrestrial areas. The average
S2 cell size at this resolution is approximately 5 km2, with
an approximate edge length of 2 km.

All S2 cells were further subdivided into training and test
data using spatial cross validation methods (Roberts et al.,
2017). First, S2 cells containing at least natural resource
conflict from the POLECAT dataset were subdivided into
60 longitude bins using a quantile function. This step
ensured that each bin contained approximately the same
number of natural resources conflict events. Second, the
training and test sets were created by assigning each
longitude bins to one of six folds. The bins were
systematically staggered to make sure that each fold
represents different parts of the globe (Roberts et al., 2017;
Lawley et al., 2022b). Folds one to five were used for spatial
cross validation during the training process. The sixth fold was
not used during the training process and was created to act as
a test set to evaluate model performance in “unknown” areas.
Spatial cross validation methods are particularly important for
more accurate assessments of machine learning performance
for clustered training data (Roberts et al., 2017; Wadoux
et al., 2021).

Fuzzy Logic Model Methods
Fuzzy logic is a modelling methodology that is widely used to
support decision-making (Zadeh, 1965; Hüllermeier, 2005;
Lisitsin et al., 2014). The method is based on the theory of
fuzzy sets, which transform input values to a standard range
(i.e., 0-1) using a membership function (Supplementary Figure
S4; Supplementary Table S2). Each input dataset also had to
be re-scaled according to whether it represents a positive or
negative ESG indicator (Supplementary Tables S1, S2). High
ecological representation of protected areas, high biodiversity,
high ecological intactness, low potential for carbon storage,
high renewable energy capacity and consumption, low
potential for geohazards, high human and gender
development indices, low potential for displacement of
people and livelihoods, high land rights, high occupational
safety standards, and high governance rankings were all
interpreted as positive ESG indicators for the purposes of
the fuzzy logic model (Supplementary Tables S1, S2). Two
different fuzzy membership functions were then used as part
of the current study: (1) linear (e.g., governance data;
Supplementary Figure S2); and (2) sigmoid (e.g.,
environmental and social data; Supplementary Figure S4).
The choice of membership function was guided by the area
under the receiver operating characteristics plot (ROC-AUC) for
predicting natural resources conflict. The density of all conflict
events (i.e., verbal and physical events from all POLECAT
categories) was also used as one of the inputs to the fuzzy

model to facilitate comparison between all three models.
However, unlike the more advanced machine learning
methods discussed below, knowledge-driven models do not
require training labels or cross validation. Fuzzy operators
were then used to combine the fuzzified input values and
generate a fuzzy output (Supplementary Figure S4;
Supplementary Table S2). The fuzzy OR operator was used
wherever required as a preliminary step to ensure that each
ESG dimension is supported by a single data source. For
example, the four data sources used to measure above and
below ground carbon were combined into a one “carbon
storage” dimension using a fuzzy OR operator so that this
theme was not assigned four times the importance in the
overall environmental rating (Supplementary Table S2).
Fuzzified data for each ESG dimension were then combined
using a fuzzy gamma operator (Supplementary Figure S4;
Supplementary Table S2). The fuzzy gamma operator uses
a product function to balance the increasing tendency of a
simple sum operator for more accurately modelling S2 cells
that contain mixed evidence (i.e., positive and negative
indicators of ESG). In all cases, the fuzzy gamma value of
0.85 was selected to avoid overly penalizing negative ESG
indicators. Weightings for each of the fuzzified scores were
generated automatically based on the ROC-AUC for the
POLECAT dataset to improve model results (Supplementary
Figure S4; Supplementary Table S2). The final ESG rating is
based on a fuzzy gamma operator for the combined
environmental, social, and governance scores
(Supplementary Figure S4; Supplementary Table S2).
Higher ESG ratings (i.e., higher fuzzy scores) are interpreted
below as being more favourable, and lower risk, for natural
resources conflict.

Naïve Bayes Model Methods
Naïve Bayes is a simple supervised machine learning method
that calculates the probability of a hypothesis (i.e., class label)
given some evidence (i.e., input features; Domingos and
Pazzani, 1996; Friedman et al., 1997; Wickramasinghe and
Kalutarage, 2021). Predictions are based on the conditional
probabilities of each feature learned during training and
following Bayes’ theorem, as implemented in the H2O
artificial intelligence platform8. Input data were scaled
(i.e., 0-1) similar to the fuzzy model described above prior to
modelling. Positive and negative training labels were derived
from the re-processed POLECAT dataset based on the
presence and absence of natural resources conflict events,
respectively (Figure 2C; described above). Spatial cross
validation was used to split data into training and test sets
(described above). Multiple weightings (i.e., 10, 100, 1,000,
10,000) were used to address the extreme class imbalance
between positive (n = 4,288) and negative labels (n =
22,525,819) as part of a series modelling iterations.
Classification accuracy did not improve significantly after
assigning the weights value to “100,” and it is this iteration

8www.h2o.ai
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of naïve Bayes models that is described below. Model
performance is reported for the test set which is not used
during training and provides an indication of model
performance in unknown areas. Despite its simplicity (e.g.,
the method assumes conditional independence of the source
data), naïve Bayes can yield excellent performance and works
well without hyperparameter tuning and for models with large
numbers of features (Friedman et al., 1997; Wickramasinghe
and Kalutarage, 2021). Herein, naïve bayes is used as a simple
supervised learning model to compare against the knowledge-
driven fuzzy logic model (described above) and the more
advanced deep learning methods (described below).

Deep Learning Model Methods
Deep learning differs from naïve Bayes and other forms of
machine learning because important data features are
extracted as part of the training process, reducing the need
for human input (LeCun et al., 2015). Most deep learning
methods are based on artificial neural networks, which can
be adapted for a wide variety of unsupervised and supervised
learning tasks. Feed-forward artificial neural networks, also
known as multilayer perceptrons, are a basic and commonly
used architecture for supervised learning tasks, whereby data
flows in one direction from input to output. Layers of
interconnected nodes placed between the input and output
are used to create new representations of the training data.
Each node’s output is regulated by an activation function,
which allows the network to model non-linear relationships
between the inputs. Autoencoders represent a second form of
artificial neural network that can be used as part of
unsupervised pre-processing to compress (i.e., encode) data
into an abstract representation before attempting to recreate
the original data from that representation (i.e., decode). To
improve learning performance, autoencoders can also be
stacked such that results from the first decoder are passed
on as input to the second encoder (Supplementary Figure S5).
Stacked autoencoders are able to learn more complex
representations of the unlabeled input data (Gehring et al.,
2013; Kannadasan et al., 2019), and are distinct from other
autoencoder architectures that comprise multiple hidden
layers and are trained as part of a single process.

All deep learning experiments were implemented in H2O8.
First, a stack of four autoencoders comprising 32, 16, 8, and
4 nodes were used to compress the unlabeled input data to
four latent variables (Supplementary Figure S5). The features
learned during this unsupervised pre-training process were
then joined back to the labeled data. Second, a series of
feed-forward artificial neural networks were used for the
supervised learning task of predicting natural resources
conflict. The presence or absence of POLECAT natural
resources conflict events were used as positive and
negative labels, respectively, for the supervised learning
stage (Figure 2C). Negative labels were down-sampled
randomly without replacement to 50,000 S2 cells; whereas,
positive labels were up-sampled with replacement to match
the number of negative labels to address class imbalance. This
simple re-sampling process produced balanced training data

with a suitable size to identify the best possible combination of
hyperparameters as part of a Cartesian grid search (i.e., 1-
5 hidden layers; 8, 16, 32, 64, and 128 nodes; Supplementary
Figure S5). The “rectifier with dropout” activation function,
early stopping (i.e., five rounds using log loss as the
evaluation metric), dropout (i.e., 0.2), and regularization
(i.e., L1 = 0.00001; L2 = 0.00001) were kept constant to
reduce the number of possible hyperparameter
combinations for the Cartesian grid search and cross
validation was used to further limit overfitting. In all cases,
the ROC-AUC was used as the post hoc evaluation metric
(Supplementary Figure S5). Two hidden layers with
16 nodes yield the highest ROC-AUC overall, although the
vast majority of deep learning models yielded similar
accuracy after unsupervised pre-training (±10%). The test
set, which was not re-sampled and not used as part of the
training process, provides an overall measure of model
performance for unknown regions. The Gedeon (1997)
method was used to estimate the importance of each input
data source based on themagnitude contribution of each input
neuron to its output neuron. In H2O, variable importance is
calculated for the first two hidden layers by default. Inputs with
higher variable importance provide some indication that the
data has a greater impact on the model results, although these
types of metrics become difficult to interpret as the number of
hidden layers of a deep learning model increases.

Uncertainty Methods
Multiple methods were used to estimate the uncertainty of
model results and ESG ratings. First, missing values from
the source data were counted for each S2 cell (Figure 3A).
Areas with a greater proportion of missing source data are
interpreted as having a greater degree of uncertainty.
Second, the standard deviation of the fuzzified source
data (i.e., imputed and scaled) was calculated for each
S2 cell and presented in Figure 3B. Areas with higher
standard deviations highlight S2 cells with mixed
evidence towards the ESG ratings (i.e., positive and
negative indicators of ESG) and relatively high
uncertainty. For example, S2 cells for countries with poor
governance but well-protected ecoregions would yield
relatively high standard deviations (Figure 3B). Finally,
Monte Carlo-style re-sampling was used to estimate the
uncertainty of the fuzzy ESG rating for each lithium mineral
occurrence (Lisitsin et al., 2013; Lisitsin et al., 2014). Re-
sampling was based on Gaussian distributions, which were
calculated from the original data value and the standard
deviation of each input data source. The simulated values
for each S2 cell and variable were then fuzzified using a
linear or sigmoidal membership function (i.e., scaled to a
fixed range) and propagated through the fuzzy logic model
(Supplementary Figure S4; Supplementary Table S2). This
process was repeated 10,000 times for each lithiummineral
occurrence. The standard deviation of the re-sampled data
provides an uncertainty estimate for the ESG rating of each
lithium mineral occurrence, taking into account uncertainty
in the underlying source data.
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RESULTS

Model Results
All model results are presented in Figures 4–10;
Supplementary Tables S1-S4. Fuzzy model results range
between 0.12-0.82. Higher fuzzy model results are
interpreted as a higher ESG rating and lower spatially
situated risks (Figure 4D). Overall, Oceania yield the highest
ESG ratings (mean = 0.47; standard deviation or SD = 0.03; n =
1,833,889) followed by North America (mean = 0.45; SD = 0.03;
n = 4,857,395), South America (mean = 0.41; SD = 0.02; n =
3,526,667), Europe (mean = 0.38; SD = 0.03; n = 4,388,861),
Africa (mean = 0.34; SD = 0.06; n = 5,543,086), and Asia (mean
0.33; SD = 0.04; n = 6,598,894). Countries with the highest
average ESG ratings include Finland (mean = 0.49), Norway
(mean = 0.483), Australia (mean = 0.48), Canada (mean = 0.47),
and Sweden (mean = 0.46); whereas Iraq (mean = 0.24),
Zimbabwe (mean = 0.22), Syria (mean = 0.21), North Korea
(mean = 0.21), and Somalia (mean = 0.16) yield the lowest ESG
ratings overall (Figure 5; N.B. small islands were excluded from
this ranking; Supplementary Table S3). The fuzzy results also
document significant variations of ESG ratings within
individual countries due, in large part, to environmental data,
human settlements, land use, and sub-national human
development indices (Supplementary Figures S1-S3). For
example, crop and pasture land are interpreted to lower ESG
ratings in areas that are otherwise well governed with good
environmental protections (e.g., Canada; Figure 4D) because
of the possibility of displacing people and livelihoods. The

calculated ROC-AUC for the fuzzy model is 0.719 (Figure 6;
Table 1). The relatively high ROC-AUC of the knowledge-driven
model is due, at least in part, to using conflict density as a
model input (Supplementary Table S2) and optimizing the
fuzzy weights according to the natural resources conflict
labels. Knowledge-driven ESG ratings are used below to
expose opportunities and risks for lithium supply chains.

The naïve Bayes algorithm yielded an ROC-AUC for the
training and test of 0.835 and 0.813, respectively (Figure 6;
Table 1). In contrast to the fuzzy model-based ESG rating
described above, higher probabilities for natural resources
conflict based on the naïve Bayes model are interpreted to
reflect higher spatially situated risks and thus lower ESG
ratings. The good agreement between training and test sets
suggests that the naïve Bayes model can generalize well to
unknown areas despite the simplicity of the modelling method.
Overall, Asia (mean = 0.13; SD = 0.31) yields the great
probability for natural resources conflict followed South
America (mean = 0.01; SD = 0.10), North America (mean =
0.01; SD = 0.10), Europe (mean = 0.01; SD = 0.09), Africa
(mean = 0.01; SD = 0.09), and Oceania (mean = <0.01; SD =
0.03). Countries with the highest potential for natural resources
conflict include Bahrain (mean > 0.99), Seychelles
(mean >0.99), Maldives (mean >0.99), Qatar (mean >0.99),
and Barbados (mean = 0.99; N.B. Small islands were excluded
from this ranking; Supplementary Table S3). Areas with the
great potential for conflict over natural resources generally
correspond to cities, towns, and areas with large populations.
This result is expected given that these conflicts require

FIGURE 3 | Global maps showing results from the knowledge-driven fuzzy logic model: (A) environmental ratings; (B) social ratings; (C)
governance ratings; and (D) ESG ratings. Areas with higher ESG ratings based on the fuzzy logic model are interpreted to represent regions with
lower spatially situated risks.
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interactions between people, but have the potential to
misidentify spatially situated risks in areas with sparse
populations (discussed below).

The more advanced deep learning model yields a ROC-AUC
for the training and test sets of 0.913 and 0.912, respectively
(Figure 6; Table 1). These results represent an 11%
improvement over the ROC-AUC of the simple naïve Bayes
model (Figure 6). The high AUC of the test set further suggests
excellent generalization to unknown areas. Higher probabilities
for natural resources conflict based on the deep learningmodel
point to higher spatially situated risks and lower ESG ratings.
Overall, Asia (mean = 0.13; SD = 0.32) yields the great
probability for natural resources conflict followed by South
America (mean = 0.01; SD = 0.10), North America (mean = 0.01;
SD = 0.10), Europe (mean = 0.01; SD = 0.10), Africa

(mean = 0.01; SD = 0.09), and Oceania (mean = <0.01; SD =
0.03). Countries with the highest potential for natural resources
conflict include Bahrain (mean = 0.99), Barbados (mean =
0.97), Singapore (mean = 0.97), Jamaica (mean = 0.933),
and Monaco (mean = 0.91) N.B. Small islands were
excluded from this ranking; Supplementary Table S3).
Country ESG rankings are remarkably similar for both
machine learning models (Supplementary Table S3). Deep
learning results demonstrate that human settlements,
stressed ecosystems, pasture land, and crop land are the
four most important predictors of natural resources conflict

FIGURE 4 |Globalmaps showing: (A) the number ofmissing source data per S2 cell. Fuzzy logicmodel-based ESG ratings for S2 cells with a
greater proportion of missing source data are more uncertain; and (B) the standard deviation of the scaled source data for each S2 cell. Areas
with higher standard deviations point to mixed evidence (i.e., positive and negative ESG indicators) and greater uncertainty for the calculated
fuzzy model-based ESG ratings.

FIGURE 5 | Top 20 countries ranked to their average fuzzy
logic model-based ESG rating. Countries with higher ESG ratings
are interpreted to represent regions with lower spatially saturated
risks. Results have been filtered to remove small islands
(i.e., 10s of km). Uncertainties are reported as two standard
deviations. Countries with low uncertainties reflect relatively
uniform ESG ratings and/or countries with a large proportion of
missing data (e.g., Greenland).

FIGURE 6 | Receiver operating characteristics plot showing
model results for the fuzzy logic, naïve Bayes, and deep learning
models. Close agreement between the area under the curve (AUC)
for the training and tests suggests good generalization of
model results to unknown areas. Results for the fuzzy logic model
are evaluated using the entire model space because natural
resources conflict events were not used as labels during training.
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(Supplementary Figure S7). These results suggest that deep
learning results are heavily biased towards areas of greatest
population density (Figure 7) similar to the more simple naïve
Bayes model described above. Variable importance further
suggests that latent variables, which were automatically
extracted during the autoencoders step, are more important
predictors of natural resources conflict than some of the
source data (Supplementary Figure S7). Automatic feature
extraction is a major advantage of deep learning over other
machine learning methods.

Lithium Mineral Occurrences
The locations of lithiummineral occurrences were converted to
their corresponding S2 cell before joining to the fuzzy model
results (n = 206). The fuzzy model-based ESG rating and its
uncertainty for each lithium mineral occurrence is presented in
Figure 8 and Supplementary Table S4. Mineral occurrences
with the highest ESG ratings are interpreted to be associated
with lower spatially situated risks. Uncertainties are based on
Monte-Carlo re-sampling of every value for each S2 cell before

propagating the simulated values through the fuzzy logic
model (Supplementary Figure S4; Supplementary Table S2).
We interpret ESG ratings that do not overlap within uncertainty
at two standard deviations as important differences (Figure 8).
Overall, intrusion-hosted lithium mineral systems are the most
abundant and yield the greatest range of ESG ratings (mean =
0.40; SD = 0.08; max = 0.49; min = 0.21; n = 146; Figure 8;
Supplementary Table S4). These mineral systems occur all
over the globe and there is high potential of finding new
deposits (Figure 2D). Pegmatite-hosted lithium mineral
occurrences in Canada (e.g., Whabouchi rating = 0.48) and
Finland (e.g., Rapasaari rating = 0.49) yield the highest ESG
ratings overall (Supplementary Table S4). Brine-hosted
deposits are the second most abundant mineral system and
yield the second greatest range of ESG ratings (mean = 0.42;
SD = 0.04; max = 0.48; min = 0.30; n = 49; Figure 8;
Supplementary Table S4). These mineral systems are
geographically restricted (Figure 2E), with the highest ESG
ratings located in North America (e.g., Clayton Valley
rating = 0.47) and lower ESG ratings in Europe (e.g., Vulcan
rating = 0.37) and South America (e.g., Atacama rating = 0.46;
Uyuni rating = 0.37; Supplementary Table S4). Volcano-
sedimentary lithium mineral systems are the least abundant
and yield intermediate ESG ratings (mean = 0.45; SD = 0.05;
max = 0.47; min = 0.31; n = 11; Supplementary Table S4).
Deposits located in the United States of America (e.g.,
McDermitt, rating = 0.47) tend to yield higher ESG ratings
than Mexico (i.e., Sonora, rating = 0.40) and Serbia
(i.e., Jadar, rating = 0.31). We note that mineral licenses for
the Jadar deposit were recently revoked due to environmental
concerns and public opposition. The potential tradeoffs
between ESG ratings and resource size are presented in
Figure 9 and discussed below. Because the more advanced

FIGURE 7 | (A) Global map of the deep learning results showing the class probability of each S2 cell for containing a natural resources
conflict. The presence or absence of POLECAT conflict events were used as positive and negative labels, respectively, formodel training (see text
for details). Areas with higher potential for natural resources conflict are interpreted to represent regions with higher spatially situated risks; (B)
deep learning model for northern Europe, showing that areas with high potential for natural resources conflict correspond to human
settlements; and (C) deep learning results for eastern Africa, showing that areas with high potential for natural resources conflict correspond to
crop land, pasture land (i.e., livestock), and high geohazards.

TABLE 1 | Model results.

Fuzzy Naïves Bayes Deep Learning

Model (n) 26,752,643 26,752,643 26,752,643
Train (n) NA 22,530,107 100,000
Test (n) NA 4,222,536 4,222,536
Positive Labels Train (n) NA 4,288 50,000
Negative Labels Train (n) NA 22,525,819 50,000
Positive Labels Test (n) 4,288 861 861
Negative Labels Test (n) 26,748,355 4,221,675 4,221,675
ROC-AUC Train NA 0.835 0.913
ROC-AUC Test 0.719 0.813 0.912
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machine learning results are biased by population density,
naïve Bayes and the deep learning results were not
assessed for this case study because a large proportion of
mineral occurrences are located in remote areas.

DISCUSSION

Advances in Geospatial ESG
The utility of geospatial ESG as part of pre-competitive land-
use planning is three-fold: (1) it enables ESG considerations to
be incorporated early in decision-making frameworks (i.e., pre-
competitive) where they can influence perceptions of resource
potential (Walsh et al., 2020; Lawley et al., 2022a); (2) ratings
for individual projects can be placed into their regional and
global contexts (Northey et al., 2017; Lèbre et al., 2019; Valenta
et al., 2019; Lèbre et al., 2020; Sonter et al., 2020; Garcia-Zavala
et al., 2023); and (3) geospatial ESG ratings based on public
data can be used to validate corporate ESG reports and
potentially guard against “greenwashing” (Moodaley and

Telukdarie, 2023). The results highlight regions with high
ESG ratings corresponding to well-protected ecoregions,
good availability of freshwater, low risk of geohazards,
access to renewable energy, low potential for the
displacement of vulnerable people with weak legal rights,
strong worker protections, and good governance (Figure 4;
Supplementary Figures S1-S3). Some of the countries with the
highest ESG ratings are prospective for a wide range of CRM.
Our results highlight how public ESG data can be used to guide
natural resources policies that on-shore, or friend-shore, supply
chains (e.g., Mineral Security Partnership; Figure 5; Vivoda,
2023). Monte Carlo-based analysis demonstrates that the
spatially situated risks identified as part of the current study
reveal statistically significant differences despite uncertainties
related to the underlying source data (Figure 8). The high ROC-
AUC for the deep learning test set further suggests that our
results are broadly applicable for predicting natural resource
conflict at varying levels of severity.

Data supporting these ratings were focused on mappable
criteria for the most important ESG indicators within a CRM

FIGURE 8 |Monte Carlo results showing the knowledge-driven ESG rating for each lithiummineral occurrence and its uncertainties reported
at two standard deviations. Mineral occurrences are colour coded to the mineral system. Labeled mineral occurrences correspond to the
25 largest Li2O tonnage estimates (Owen J. et al., 2022). The results demonstrate that the highest and lowest ESG ratings do not overlap within
two standard deviations, suggesting that there are important differences in spatially situated risks for the different geological sources of
lithium. Mineral occurrences with higher fuzzy logic model-based ESG ratings are interpreted as being associated with lower spatially
situated risks.

FIGURE 9 | Ternary diagrams showing the fuzzy logic model-based ESG ratings for brine, igneous, and volcano-sedimentary lithiummineral
occurrences. Colours are based on a percentile scaling of the fuzzy logic model ESG ratings tomake the comparisons betweenmineral systems
easier. Sizes are based on the total Li2O resources and reserves (Owen J. et al., 2022). Mineral occurrences with higher fuzzy logic model-based
ESG ratings are interpreted as being associated with lower spatially situated risks.
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context (Supplementary Table S1). Pollution, biodiversity,
freshwater and energy consumption, waste management,
health and safety, economic development, land access, and
human rights are common ESG themes to virtually all CRM
projects (Supplementary Table S1). Most, if not all, of these
mappable ESG criteria have also been identified by
international reporting standards (e.g., Global Reporting
Initiative 14) and the Canadian Institute of Mining,
Metallurgy, and Petroleum (CIM) as the kind of “modifying
factors” that should be considered as part of the calculation
and reporting of a mineral resource (CIM, 2023). Although not
attempted as part of the current study, improving the linkages
between geospatial ESG methodologies with project-level
reporting standards (national and international) as they
develop represents an important area for future research. In
theory, this could allow explorationists and land-use planners
to identify ESG risks prior to the discovery of a mineral deposit
and then apply a “Plan-Do-Check-Act” cycle until mining
closure. We expect that this type of early planning could
improve social and environmental outcomes because the
impact of poor decisions tends to increase from the
planning stage to the operational and closure phases of a
mineral project.

Results reported as part of the current study can be used to
improve ESG ratings for any given jurisdiction and identify the
most important spatially situated risks. Human settlement,
crop land, and pasture land (i.e., livestock), and other social
dimensions yield the highest variable importance for the deep
learning model overall, suggesting that land access is an
important catalyst for driving natural resources conflict
(Supplementary Figure S6). This result is somewhat
expected given that the POLECAT conflict event dataset is
extracted from news stories involving people, although the
locations of these news stories do not necessarily correspond
to where people live (Halterman et al., 2023). Moreover, the
deep learning results are able to identify nonlinear
relationships between ESG dimensions that are more
complex and more predictive for natural resources conflict
than some of the individual source data (Supplementary
Figure S7). The apparent high conflict potential in areas
with human settlements underscores the importance of
data-driven land use planning at the earliest possible stage
of decision-making to guide government policies that seek to
manage spatially situated risks and ultimately improve ESG
ratings (Figure 7). Balancing the positive (e.g., decent work and
economic growth) and negative aspects of mining is essential
for making progress towards the SDG.

Today, public opposition presents a major financial risk to
any new mineral development project and is sometimes
described as not-in-my-backyard (NIMBY). This effect is
even observed for well managed CRM projects with good
ESG credentials. The net effect of NIMBY is that mineral
exploration and development is increasingly pushed to
remote CRM frontiers, or “greenfield” settings, with sparse
populations (Martinez-Alier, 2021). This is reflected by the
apparent low-potential for conflict in remote regions
(Figure 4D, 7). Indigenous people are one of the groups

most affected by this trend (Kröger, 2016; Artelle et al.,
2019; Owen J. R. et al., 2022; Eerola, 2022; Hanacek et al.,
2022; Owen et al., 2023). Unfortunately, rural and remote
communities tend to have less resources to negotiate
benefit sharing and conduct their own social impact
assessments. The shifts in global supply chains towards
CRM frontiers and the effects of neocolonialism are also a
major source of concern for developing countries with high
geological potential for CRM (Kalantzakos, 2020).

Governments that seek to strengthen the supply chains of
CRM by diversifying supply through friend-shoring will likely
accelerate exploration in greenfield settings because remote
regions yield lower potential for conflict relative to the global
average for all three models (Supplementary Table S3).
Increasing mineral exploration expenditures in the Arctic
represents an example of this shift and is consistent with
the apparent low conflict potential in northern North
America, Iceland, and Greenland predicted by the deep
learning model (Figure 7; Hanacek et al., 2022).
Unfortunately, Arctic ecosystems are some of the most
vulnerable to climate change and there is very little data
available to accurately assess the cumulative effects of any
potential surge in new mineral development. Other areas with
poor ESG ratings include sparsely populated islands, which
yield apparently low probability for conflict based on the deep
learning results despite their unique ecosystems and
vulnerability to sea-level rise (N.B. deep-sea deposits were
not considered as part of the current study). Knowledge-
driven models are the least susceptible to these biases and
likely provide the most accurate assessment of ESG ratings in
remote areas (Figure 4D). The fuzzy logic model is used below
to evaluate the ESG ratings of lithium mineral occurrences
because greenfield settings have the greatest potential for
finding new sources of CRM (Figures 8–10).

Lithium Case Study
Lithium is a CRM because: (1) lithium demand will grow by a
factor of 40 between 2020 and 2040 due to increased
manufacturing of electric vehicles (International Energy
Agency, 2021; Michaux, 2021). Maintaining lithium supply
as demand grows will likely require increased lithium
production; and (2) China currently processes,
beneficiates and manufacturers three-quarters of all
lithium-ion batteries (International Energy Agency, 2022).
However, unlike some other CRM, lithium occurs at
elevated concentrations within seawater and some
groundwaters and is relatively abundant in the continental
crust (Kesler et al., 2012). As a result, geological scarcity is
not the principal factor restricting lithium supply (Bowell
et al., 2020). Instead, lithium supply chain disruptions are
primarily controlled by ESG factors related to extraction and
processing (Petavratzi et al., 2022). Uncertainty over the
future of the Jadar deposit in Serbia due to environmental
considerations represents a recent example. Life cycle
analysis and previous research suggests that these ESG
factors likely vary systematically according to the geological
sources of lithium (Ambrose and Kendall, 2020b). Pegmatite
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and other igneous intrusion-hosted lithium mineral systems
tend to require energy intensive mineral processing, which,
in the absence of renewable energy capacity, could greatly
increase carbon emissions; whereas brine processing is
water intensive but requires less energy because lithium
is concentrated during evaporation by solar energy. The
geological sources of lithium play an important role in the
interpretation of life cycle analysis.

Our new model results demonstrate that spatially
situated ESG risks also vary as a function of mineral
systems type. Placing these spatially situated ESG risks
within the context of a mineral system complements
previous commodity-focused ESG studies that did not
consider the geological sources of CRM. Recognizing the
geological sources of CRM is important because lithium
brines are geographically restricted to mountains or areas
close to the equator with hot and/or arid climates (Figures
2D–F). In contrast, igneous-related lithium deposits are the
most geographically widespread and, as a result, also yield
the greatest range of ESG ratings (Figure 2D; 8). However,
most igneous lithium mineral systems are relatively small
compared to the other potential sources of lithium
(Figure 9). The pegmatite-hosted Monono deposit
represents an important exception, but we demonstrate
that this deposit also yields one of the lowest ESG
ratings overall (Figure 8). This type of global context
complements life cycle analysis by considering how the
locations of raw material extraction, manufacturing, and
distribution has the potential to influence environmental

and social outcomes at multiple spatial scales (Ambrose
and Kendall, 2020a; Ambrose and Kendall, 2020b). We note
that our results are presented for mineral occurrences,
which may, or may not, correspond to operating lithium
mines (Supplementary Table S4). Geospatial ESG can be
applied at all stages of development, even before mineral
exploration starts. We suggest that predicting spatially
situated risks (i.e., low ESG ratings and high potential for
natural resources conflict) may also be important for
unconventional sources of CRM, such as the giant
volcano-sedimentary lithium minerals systems (Figure 9),
where the environmental and social impacts of mining are
not as well understood (e.g., acidification may be required
to liberate lithium from clays; Zhao et al., 2023).

The lithium triangle in South America represents an
important test site for the geospatial ESG methodology
(Figure 10). Salt lakes in Chile, Bolivia, and Argentina are
host to some of the largest lithium brine deposits in the
world (Supplementary Table S4; Risacher and Fritz, 2009;
Kesler et al., 2012; Owen J. et al., 2022). However, these
high-altitude desert landscapes also represent important
wildlife hotspots (e.g., flamingos and migratory shore birds)
and are associated with major geohazards and extreme water
scarcity (Supplementary Figure S1; Marconi et al., 2022).
Social conflict has already occurred over the mining’s
impact on water availability (Liu and Agusdinata, 2020;
Garcia-Zavala et al., 2023). The fuzzy model demonstrates
that Bolivia yields the lowest ESG ratings for the Lithium
Triangle, due to the lower governance ratings (Figure 3B).

FIGURE 10 | (A) Lithium Triangle in Bolivia, Chile, and Argentina. Colours are based on fuzzy logic model ESG rating. Areas with higher ESG
ratings are interpreted to represent regions with lower spatially situated risks; (B) deep learning results for the Lithium Triangle showing the
probability for natural resources conflict. Salars in orange (Mihalasky et al., 2020), lithium mineral occurrences in black (Labay et al., 2018;
Mihalasky et al., 2020; Owen J. et al., 2022), and protected areas in white2 are shown for reference.
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However, within a global context of spatially situated risks,
Bolivia, Chile, and Argentina yield intermediate ESG ratings
overall (Figure 3B). This global context could be important
for decision makers to prioritize investment opportunities in
other jurisdictions with lower spatially situated risks or for local
governments to craft natural resource policies that improve
ESG credentials. At smaller spatial scales, model results
highlight significant spatial overlap between the known
lithium deposits and protected areas (Figure 10A) and
potential hotspots for social conflict (Figure 10B).
Environmental protections in Chile and Argentina boost their
ESG ratings relative to Bolivia, but reduce the available search
space for lithium deposits (Figure 10A). Exploration in the
lithium triangle highlights how ESG dimensions are
interconnected, and the challenge of balancing economic
potential with ESG risks at multiple spatial scales.

Barriers to Geospatial ESG
Demonstrating that public ESG data can be used to predict
natural resources conflict is a promising result, and has
implications for land-use planning, government policies, and
sustainable investing. However, the efficacy of this type of
data-driven land use-planning faces a number of theoretical
and technical obstacles. First, a key limitation in the adoption
of geospatial ESG as a methodology is the implicit need to
assert risks and values. For instance, a sustainable
development outcome assessed in the present paper is the
safe and effective management of mine waste (see
Supplementary Table S1). Our approach to assessing mine
tailings ESG risks necessitates a consideration of natural
hazards in isolation (Supplementary Figures S1E,S1F);
whereas, a holistic understanding of risks would require the
integration of natural hazards alongside infrastructure
vulnerabilities and societal exposures to the impacts of
tailings failures (i.e., systems thinking). The adoption of
different technical solutions within projects (e.g., changes to
extractive processes that minimize tailings; tailings storage
facilities comprising dry stacks versus dams) will change the
susceptibility to damage and exposure profile of projects. This
example highlights the need for geospatial ESG metrics to be
interpreted within context, and to integrate multiple sources of
information as part of broader land-use planning. If pre-
competitive ESG decision-making frameworks are held to be
didactic, then they risk biasing results towards historic
practices. This may lead to perverse outcomes if important
principles are missing from the analysis as it could preclude
opportunities for improvement and innovation to address
existing ESG issues. Data-driven methods, such as deep
learning, are particularly susceptible to embedding errors
and historical biases into the results, as demonstrated
above for population density. Our study focuses on public
data to map the most important sources of risk to improve
transparency and address those criticisms, but we also
recognize that ESG values are likely to evolve over time. The
temporal evolution of ESG values were not addressed as part
of the current study. Moreover, ESG values have the potential to
clash, an important international consideration that is already

observed between cultures (Hilson et al., 2017; Mensah, 2021),
and among the 17 SDG. The question of balancing economic
growth (SDG-8) with the wellbeing of people (SDG-3) and the
environment (SDG-14 and -15) cannot be answered by
geography alone.

Second, the availability and quality of data is highly variable
around the globe (Figure 3A; Supplementary Figures S1-S3).
Data for some key ESG indicators is also missing (e.g., social
license). High resolution data are generally available for some
priority environmental dimensions (Figures 2A, B;
Supplementary Figure S1), but social and governance data
are generally provided as national statistics with varying
reliability. Additional research is required to acquire more
granular data and disaggregate national statistics wherever
possible. Sub-national data are urgently needed as regional
disparities within a single country and with proximity to
political boundaries represent areas with high potential for
natural resources conflict (Supplementary Figures S2C,
S2D). Most national datasets were also collected with a
different purpose than how the data is used for the present
study (i.e., primary versus secondary data). The general
absence of high-quality primary data means that most
global studies are based on the same secondary predictors
(e.g., the Worldwide Governance Indicators; Supplementary
Figure S3; Kaufmann et al., 2011). Although not addressed
as part of the current study, all ESG data will also vary over
time. Developing computational systems that update ratings
with the latest data as it becomes available is essential if
geospatial ESG methodologies are adopted in the future and
for near real-time monitoring of progress towards the SDG, as
has recently been proposed for spatial finance (Rossi
et al., 2024).

Third, ESG indicators are difficult to quantify and map even
when high-quality data is available. Biodiversity could be
measured as the total number of species present within an
area, the number of endemic species, or genetic diversity.
Protected areas (PAs) and key biodiversity areas provide
some indications of such values within defined territories,
although conservation decision-making is also faced with
incomplete data (Supplementary Figure S1B; Lawley et al.,
2022a). Social and governance indicators are similarly difficult
to quantify and map. The opportunities and risks associated
with each ESG indicator are also non-linear, characterized by
so-called “tipping points” (Dakos et al., 2019). These abrupt
changes, which are sometimes caused by far-field effects, are
difficult to predict and severely complicate the interpretation of
an overall ESG rating. More research is needed to identify the
best indicators for each ESG dimension within the context of
CRM (i.e., materiality) and model the complex, non-linear
effects that characterize most natural and social
phenomena. Whether machine learning could be used to
identify the most important ESG indicators represents
another future area of research.

Fourth, the causes of natural resources conflict are
interconnected in complex ways. Untangling these risk
factors for the purposes of predictive modelling is
exceptionally difficult. The high standard deviation for some
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S2 cells highlights parts of the globe with mixed evidence
(Figure 3B), which can be further evaluated by visualizing the
contributions of individual data sources to the overall ESG
rating (Figure 4). This type of disaggregated, layer-by-layer
analysis is an essential step for unlocking the geological
potential of CRM in high-risk areas and is one of the main
advantages of knowledge-driven methods. In contrast, deep
learning methods identify the most important features
automatically as part of the training process
(Supplementary Figure S7), and can be used to de-correlate
input features for the purposes of prediction. However, neither
of these modelling methods address the complex interactions
between the ESG dimensions that drive the underlying conflict.
Deep learningmodels are also difficult to interpret and contrast
with calls for improved transparency as part of ESG risk
disclosure and decision-making.

Finally, more research is needed to validate spatially situated
risks with the perceptions of impacted people. Social surveys
are particularly effective at capturing the multiple perspectives
and epistemologies of natural resources conflicts (Petavratzi
et al., 2022). Integrating these qualitative and/or semi-
quantitative data with spatial models can be used as an
external validation method to improve results, but is also
essential for reflecting the views of marginalized people that
may not be represented by the data used in this study.
Strengthening social participation and basing decision-making
on open data has been identified as a priority for improving ESG
ratings in the lithium triangle (Figure 10; Petavratzi et al., 2022),
and other regions that are prospective for CRM.We suggest that
improving the accuracy and rigor of geospatial ESG methods
could be one component of the broader process to make
progress towards the SDG.

CONCLUSION

High ESG risks for some CRM projects threaten to delay or
increase the cost of the renewable energy transition. The
minerals industry and governments are adapting to this
change by increasing ESG risk disclosure and by developing
policies to diversify the production and processing of CRM to
“safer” jurisdictions. Geospatial methodologies have been
proposed to identify high-risk regions based on key ESG
indicators. However, these previous studies did not evaluate
whether regions identified as “high-risk” translate to actual
natural resources conflict events. Herein we address that
knowledge gap by combining public geospatial data to
predict natural resources conflict. The more advanced deep
learning model is the best-performing overall, but likely
underestimates the potential for natural resources conflict in
CRM exploration frontiers with sparse populations. For these
types of settings, a knowledge-driven examination of
overlapping land uses prone to conflicts may be the best
way to detect their potentiality. Knowledge-driven model
results reveal that giant sedimentary- and brine-hosted
deposits (i.e., >10 Mt Li2O) are restricted to regions with
higher spatially situated risks (i.e., low to intermediate ESG

ratings) relative to a subset of smaller pegmatite-hosted
mineral occurrences with the highest ESG ratings overall
(i.e., lower spatially situated risks). The results point to
trade-offs between the sources of lithium, resource size, and
spatially situated risks. We suggest that our results are broadly
applicable to other CRM and that spatially situated risks should
be included as part of broader, land-use planning at the earliest
possible stage of decision-making (i.e., pre-competitive) to
improve ESG performance and strengthen global supply
chains. It may also be valid for local and regional
assessments with the incorporation of higher resolution
national and sub-national datasets. Moreover, geospatial
ESG results can be used by the public to validate corporate
reporting, inform sustainable investments, and make progress
towards the SDG.
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SUPPLEMENTARY FIGURE S1 | Data supporting the environmental dimension,
including: (A) ecoregions; (B) protected areas; (C) below ground carbon; (D) above
ground carbon; (E) landslide hazards; and (F) seismic hazards. Areas with high
carbon and high potential for geohazards were considered negative ESG
indicators for the purposes of the fuzzy logic model.

SUPPLEMENTARY FIGURE S2 | Data supporting the social dimension, including:
(A) crop land (Buchhorn et al., 2020); (B) livestock (Gilbert et al., 2015); (C) sub-
national human development indices (Smits and Permanyer, 2019); (D) sub-
national gender development indices (Smits and Permanyer, 2019); (E)
Indigenous rights (Wily and Tagliarino, 2018); and (F) climate vulnerability
(Chen et al., 2015). Areas with crop land, livestock, and high climate
vulnerability were considered as negative ESG indicators for the purposes of

the fuzzy logic model; whereas, high human and gender development indices and
high Indigenous rights were considered positive ESG indicators.

SUPPLEMENTARY FIGURE S3 | Data supporting the governance dimension
based on the Worldwide Governance Indicators (Kaufmann et al., 2011). All of
these indicators were considered as positive ESG indicators.

SUPPLEMENTARY FIGURE S4 | Schematic diagram showing the knowledge-
driven fuzzy logic modelling workflow. Source data were spatially indexed to the
S2 discrete global grid system before scaling (i.e., positive ESG indicators
correspond to higher values) and applying a fuzzy membership function
(i.e., sigmoid or linear). Fuzzified scores are combined using a fuzzy OR
operator for environmental and social themes supported by more than one
dataset (e.g., multiple datasets map carbon storage). Each theme supporting
each ESG dimension was then combined using a fuzzy gamma operator. The
fuzzy gamma operator was also used to combine environmental, social, and
governance ratings to calculate an overall ESG rating. Natural resource conflicts
were used to guide the weightings of the fuzzified scores but are not required for
model training.

SUPPLEMENTARY FIGURE S5 | Schematic diagram showing the deep learning
modelling workflow. First, all source data were used as input for an autoencoders-
based artificial neural network as a form of unsupervised pre-processing. Outputs
from the first autoencoder are passed on as input for the second autoencoder and
this process repeats itself for the third autoencoder. Second, deep learning
features were then joined back to the source data for the supervised machine
learning task. A grid search was used to find the best possible combination of
hyperparameters for the feed-forward artificial neural network.

SUPPLEMENTARY FIGURE S6 | Unsupervised pre-training using stacked
autoencoders generated four latent variables (a-d). Each of these new features
were joined back to the original data to train an artificial neural network based on
the locations of natural resources conflict events.

SUPPLEMENTARY FIGURE S7 | Variable importance plot for the deep learning
model based on the method described by Gedeon (1997) and implemented in
H2O8. The ESG dimensions with higher variable importance are generally
considered to have had a greater impact on the deep learning results.
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